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 Monitoring Photosynthetic Pigments of Shade Grown Tea from 

Hyperspectral Reflectance 

The highest quality green tea is cultivated using shading treatments in Japan; 

however, shading can lead to early mortalities of tea due to excessive 

environmental stress. The allocation of photosynthetic pigments, chlorophyll a, b 

and carotenoids, could be a good indicator for evaluating production or 

environmental stress in plants; thus, developing an in-situ method to monitor 

photosynthetic pigments is useful for agricultural management. To assess the 

accuracy of the estimation of photosynthetic pigment contents with existing 

supervised learning models, four different approaches were compared including 

random forests, kernel-based extreme learning machine (KELM), deep belief nets 

and support vector machine. Overall, KELM had the highest performance with a 

root mean square error of 1.95 ± 0.36 μg cm-2, 1.08 ± 0.11 μg cm-2 and 0.68 ± 

0.10 μg cm-2 for estimating chlorophyll a, b and carotenoid contents, respectively. 

Keywords: hyperspectral; machine learning; photosynthetic pigments; shade 

grown tea 

1. Introduction 

Green tea, which is extracted from Camellia sinensis, has stronger antioxidant abilities 

than black tea (Lee et al., 2002, Ning et al., 2017), and one major active constituent 

(epigallocatechin-3-gallate) could inhibit the semen-mediated enhancement of HIV 

infection (Hauber et al., 2009). As a result, green tea has attracted a great deal of 

attention. 

Appearance, aroma and taste are important factors for assessing the quality of 

tea (Chen et al., 2008, Bian et al., 2010), and shading of tea increases chlorophyll a 

content, which is important for evaluating appearance. This increase in chlorophyll a 

content is caused by reducing natural photosynthesis in the leaves; however, shading 

can lead to early mortalities of tea due to excessive environmental stresses. Therefore, 



detecting environmental stress using field measurements is required for better tea tree 

management.  

Chlorophyll pigments consist of two main types, a and b, and their 

concentrations relate closely to primary production because these pigments absorb 

sunlight and use their energy to synthesize carbohydrates from CO2 and H2O (Gitelson 

et al., 2006). Chlorophyll a/b ratios increase sharply in a linear manner at low light 

intensity, but increase gradually and linearly at higher light intensities (Leong and 

Anderson, 1984), and the ratio is positively correlated with the amount of the core 

complex of photosystem II (Terashima and Hikosaka, 1995). Therefore, it is possible to 

use the ratio to predict the abundance of chlorophyll associated with photosystem I or II. 

A high ratio would mean less light-harvesting chlorophyll protein complex II and thus 

lower photosystem II chlorophyll content and higher photosystem I chlorophyll content 

(Leong and Anderson, 1984), which has been applied for evaluating the response to the 

changing environmental conditions around vegetation (Tanaka et al., 2001, Hobe et al., 

2003, Chen et al., 2010). Carotenoids are also involved in photoprotection and light 

collection in photosynthesis (DemmigAdams et al., 1996). In addition, they help to 

protect unsaturated fatty acids, phospholipids and galactolipids from damage (Edge et 

al., 1997). Therefore, the variation in total chlorophyll/carotenoid ratios could be a good 

indicator for evaluating environmental stress in plants (Hendry and Price, 1993). 

While the SPAD-502 Leaf Chlorophyll Meter (Konica Minolta Inc.) has been 

widely used for field measurements of leaf chlorophyll content (Leon et al., 2007, 

Bannari et al., 2008, Lausch et al., 2013), in-situ measurements of leaf carotenoid 

content are challenging. Spectrophotometric measurements using ultraviolet and visible 

(UV-VIS) spectroscopy or high-performance liquid chromatography (HPLC) 

measurements have been used (Bilger et al., 1989). However, there are few applicable 



techniques for the in-situ assessment of chlorophyll/carotenoid ratios because many 

methods are destructive. 

 In contrast, hyperspectral remote sensing offers an efficient way to monitor 

biochemical properties such as chlorophyll content (Zhang et al., 2011, Lausch et al., 

2013, Sonobe and Wang, 2017). However, most available datasets are composed of 

measurements taken under relatively low light-stress conditions (e.g. the coefficients of 

linear regression models for estimating chlorophyll a content from carotenoid contents 

were 2.99 (for LOPEX dataset) to 3.45 (for HAWAII dataset) (Féret et al., 2008). In 

Japan, the highest quality green tea is cultivated using shading treatments, which 

imposes environmental stress on vegetation and changes the allocation of chlorophyll a, 

b and carotenoids, and the coefficients of linear regression models for estimating 

chlorophyll a content from carotenoid contents sometimes exceed five (Sonobe et al., 

2018). Therefore, we evaluated estimates of three photosynthetic pigments using the 

realistic measurements under high stress conditions based on hyperspectral data.  

Recently, machine learning algorithms have attracted attention as an approach to 

quantifying biochemical properties (Doktor et al., 2014, Lv and Yan, 2014). The 

regression algorithm is also used to estimate the status of vegetation from hyperspectral 

reflectance. Random forests (RF) has been extremely successful as a general-purpose 

classification and regression method (Biau and Scornet, 2016) and it is a potential tool 

for assessing photosynthetic pigments contents. The support vector machine (SVM) has 

also been a very effective approach, and has been widely used with a Gaussian kernel 

function (Burges, 1998). In addition, recently developed extensions of machine learning 

including kernel-based extreme learning machine (KELM) and deep belief nets (DBN) 

were compared in this study.  



The main objectives of this study were to (1) to examine the potential of 

hyperspectral data for the assessing three photosynthetic pigments under high stress 

conditions and (2) to identify which machine learning algorithm is most suitable as a 

regression model. 

 

2. Materials and methods 

2.1.Measurements and datasets 

Our sampling sites were located at the Institute of Fruit Tree and Tea Science, National 

Agriculture and Food Research Organization, Shimada, Japan. Shade treatment, which 

is practiced for the top grades (Figure 1), causes tea leaves to synthesise higher levels of 

chlorophyll and amino acids. To evaluate the influence of shading on environmental 

stress, tea trees were cultivated under four shading treatments (open-0 % shading, 35 % 

shading, 75 % shading and 90 % shading using black shade nets beginning 21 April 

2017. Spectral reflectance and biochemical properties were measured on 1 and 11 May 

2017. In total, 46 (8 samples for open-0 % shading, 12 samples for 35 % shading, 12 

samples for 75 % shading and 14 samples for 90 % shading) and 60 measurements (15 

samples for each treatment) were obtained on 1 and 11 May 2017, respectively. 

 

<Figure 1> 

 

Following leaf reflectance measurements, leaf discs were punched for pigment 

concentration measurements and analysed using dual-beam scanning ultraviolet-visible 

spectrophotometers (UV-1280, Shimadzu, Japan). Wellburn’s method (Wellburn, 1994) 

was applied to calculate chlorophyll and carotenoid contents after absorption. The 



equations used in this method for quantifying chlorophyll a (Chla, μg ml-1), chlorophyll 

b (Chlb, μg ml-1) and carotenoid (Car, μg ml-1) in dimethyl-formamide extracts are as 

follows: 

Car = (1000𝐴𝐴480 − 1.12Chla − 34.07Chlb)/245  (1) 

Chla = 12𝐴𝐴663.8 − 3.11𝐴𝐴646.8    (2) 

Chlb = 20.78𝐴𝐴646.8 − 4.88𝐴𝐴663.8    (3) 

where A is the absorbance and the subscripts are the wavelength (nm). 

Reflectance data were obtained using a spectrometer (FieldSpec4, Analytical 

Spectral Devices Inc., USA) with a leaf clip. The device has three detectors including 

visible and near-infrared (VNIR), Short Wave Infra-Red (SWIR) 1 and SWIR 2, and 

some inherent variation in detector sensitivities often causes differences in the spectral 

drifts at two wavelength locations (1000 and 1800 nm). Thus, the splice correction 

function of ViewSpec Pro Software (Analytical Spectral Devices Inc., USA) was 

applied to modify these connections.  

 

2.2.Regression model 

A stratified random-sampling approach was applied to select the samples used for 

training (50 %), validation (25 %) and test data (25 %) (Hastie et al., 2009), and the 

stratified random-sampling procedure was repeated ten times for more robust results. 

Variable selection is useful for removing non-informative variables to obtain 

better and simpler prediction models (Villar et al., 2017). Villar et al. (2017) evaluated 

the performances of three variable selection techniques including Martens uncertainty 

test, interval partial least square regression and genetic algorithm (GA), which is 

adaptive heuristic search algorithm based on the evolutionary ideas of natural selection 

and genetics, using a visible-near infrared sensor system and showed that GA was the 



best among them. In this study, GA simulated the survival of the fittest among 

individuals over consecutive five generation for estimating chlorophyll and carotenoid 

contents. Each generation were composed of a population of character strings (i.e. band 

combinations) that were analogous to the chromosome that we see in our DNA. After 

that the individuals were made to go through a process of evolution and the best band 

combination would be revealed. Following Villar et al. (2017), GA was also applied to 

select several wavelengths using training data in this study. 

Next, the regression models were generated using the supervised learning 

models RF, KELM, DBN and SVM.  

RF is an ensemble learning technique that builds multiple trees based on random 

bootstrapped samples of the training data (Breiman, 2001). Nodes are split using the 

best split variable from a group of randomly selected variables (Liaw and Wiener, 

2002). This strategy provides robustness against over-fitting and handles thousands of 

dependent and independent input variables without variable deletion. The strong 

performances of this algorithm have been documented in previous studies (Montillo and 

Ling, 2009, Johansson et al., 2014), so it was used as a benchmark in this study. RF 

regression was implemented using R version 3.3.1 (R Core Team 2016) and the 

'randomForest' package (Liaw and Wiener, 2002). 

Extreme learning machine (ELM) is a single hidden layer feed-forward neural 

network that has a fixed hidden layer, which is composed of a vast number of nonlinear 

nodes, and the hidden layer bias is defined randomly (Huang et al., 2006). ELM has 

been successfully used in many practical tasks, such as prediction, fault diagnosis, 

recognition, classification and signal processing (Li et al., 2016). Furthermore, the 

kernel trick has been applied to ELM instead of attempting to fit a non-linear model 

(Huang et al., 2012). We applied the Radial Basis Function (RBF) kernel and the 



regulation coefficient (Cr) and the kernel parameter (Kp) were tuned. KELM was 

applied using MATLAB and Statistics Toolbox Release 2016a (The MathWorks, Inc., 

Natick, Massachusetts, United States) and the source code was downloaded from 

http://www.ntu.edu.sg/home/egbhuang/. 

Restricted Boltzmann machines (RBMs) are two-layer neural networks 

including the first layer called the visible, or input layer, and the second one called the 

hidden layer. DBN consists of a multi-layer unsupervised RBMs and a layer of a 

supervised back-propagation network (Hinton et al., 2006). Dropout refers to ignoring 

units and was also used during the training phase, as it was shown to contribute good 

predictions. DBN regression was implemented using R version 3.3.1 and the 'darch' 

package (Drees, 2013). 

SVM is an effective machine learning method based on statistical learning 

theory that been successfully applied to solve the problem of high dimension and local 

minima (Ding et al., 2016). We applied the Gaussian radial basis function (RBF) kernel 

using R version 3.3.1 and the 'e1071' package (Meyer et al., 2017). It possesses two 

hyperparameters including the regularization parameter C and the kernel bandwidth γ. 

High C values lead to high penalties for inseparable points, which may result in 

overfitting. In contrast, low C values lead to under-fitting. The γ value defines the reach 

of a single training example, with low values indicating ‘far’ and high values indicating 

‘close’ reach. 

For optimizing the hyperparameters of these machine learning algorithms, 

Bayesian optimisation, which is a framework used to optimise hyperparameters of 

noisy, expansive black-box functions and defines a principled approach to modelling 

uncertainty, was applied with the Gaussian process (Bergstra and Bengio, 2012, Snoek 

et al., 2015).  



 

2.3.Statistical criteria 

Statistical criteria to evaluate the performance of these models relied on the root mean 

square error (RMSE, Equation (4)). 

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝚤𝚤� − 𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=0   (4) 

where n is number of samples, 𝑦𝑦𝑖𝑖 is the measured value and 𝑦𝑦𝚤𝚤�  is the estimated value. 

Further, a stepwise linear discriminant analysis (Draper, 1998, Burns and Burns, 

2008) was conducted to identify which wavelengths had significant differences (p < 

0.05). This technique for selecting suitable predictor wavelengths based on a multiple 

regression model was confirmed among the four shading treatments. Although there are 

models including forward, backward and combination, a combination of forward and 

backward stepwise regression was adopted in this study.  

The sensitivity of the regression models was assessed based on a data-based 

sensitivity analysis (DSA). DSA is similar to a computationally efficient one-

dimensional sensitivity analysis (Kewley et al., 2000) where only one input is changed 

at a time and the others are kept at their average values. However, DSA uses several 

training samples instead of a baseline vector (Cortez and Embrechts, 2013) and then it 

performs a pure black box use of the fitted models by querying the fitted models with 

sensitivity samples and recording their responses.  

 



3. Results and Discussion 

3.1.Chlorophyll and Carotenoid Contents of Each Treatment 

Figure 2 shows the boxplots of chlorophyll a, b and carotenoid contents of the different 

shading treatments. The contents in leaf area (cm²) ranged from 7.81-29.53 μg for 

chlorophyll a, 1.43-8.98 μg for chlorophyll b and 3.46-7.49 μg for carotenoids on 1 May 

2017, and from 18.85-44.62 μg for chlorophyll a, 5.73-16.39 μg for chlorophyll b and 

6.16-11.29 μg for carotenoids on 11 May 2017.  

Although the mean contents of chlorophyll a and b were greater with more 

shading, the differences were not significant for 35 % - 90 % shading and 75 % - 90 % 

shading for either date (p < 0.05, based on the Tukey-Kramer test). The differences in 

carotenoid contents were not significant among shading treatments (p < 0.05, based on 

the Tukey-Kramer test). 

While the chlorophyll/carotenoid ratios ranged from 2.56 to 5.53 on 1 May, they 

ranged from 4.04 to 7.63 on 11 May and the increases were confirmed during the 

experiment. The significant differences were confirmed, except for the combination 

between 75 % and 90 % shading on both dates (p < 0.05, based on the Tukey-Kramer 

test). Shading treatment results in higher leaf protein content and thicker leaves (Poorter 

et al., 2006). Generally, shaded leaves contain more photosynthetic pigments than sunlit 

leaves, and to harvest more light and nitrogen, the shaded leaves increase chlorophyll a 

content (Suzuki and Shioi, 2003). Consequently, the chlorophyll/carotenoid ratio would 

be increased. 

 

< Figure 2> 

 



3.2.Spectral Reflectance of Different Treatments 

The mean reflectance and standard deviations of each treatment are shown in Figure 3. 

The reflectance near the green peak was larger when the shading treatments were lighter 

and this tendency was clear in measurements acquired on 1 May. In addition, more 

shading made the reflectance lower at the red edge inflection point (REIP). On the other 

hand, there were little difference in the reflectance near the start of the red edge (near 

680 nm) and this tendency was clear in measurements acquired on 11 May. The shifts 

of the green peak and REIP were confirmed within the four shading treatments during 

the experimental period (Figure 4). 

The results of a stepwise discriminant analysis (p < 0.05) shows that reflectance 

at 519, 569, 686, 797 and 798 nm was useful for identification of the four shading 

treatments on 1 May (overall accuracy = 0.739), while reflectance at 564 and 701 nm 

was useful for treatments on 11 May (overall accuracy = 0.650). 

Figure 5 represents the correlations of each wavelength of spectral reflectance 

with chlorophyll a, b or carotenoid content. For all pigment contents, negative 

correlations were confirmed over visible to REIP and two troughs were identified near 

510 nm (R = -0.87 at 514 nm for chlorophyll a, -0.84 at 521 nm for chlorophyll b and -

0.83 at 504 nm for carotenoid) and 740 nm (R = -0.96 at 741 nm for chlorophyll a, -0.94 

at 739 nm for chlorophyll b and -0.90 at 746 nm for carotenoid). Although the 

correlation coefficients near 680 nm were relatively weak for chlorophyll a and b, they 

were obscure for carotenoids. Table 1 lists the selected wavelengths for each 

photosynthetic pigment. The numbers of wavelengths were 11, 17 and 13 for 

chlorophyll a, b and carotenoid, respectively. The reflectance values at 740 – 750 nm 

were not selected for chlorophyll a and b, even though they had high correlation 

coefficients. Some reflectance values at 450–500 nm were selected, despite the 

tendencies of reflectance with the shape treatments to be visually obscure (Figure 3). In 



the previous studies, these values have been applied to emphasize the reflectance at 

680-690 nm for estimating total chlorophyll contents (Penuelas et al., 1995, 

Lichtenthaler et al., 1996) and carotenoid contents (Blackburn, 1998). In this case, these 

values were also used as references. 

 

< Figure 3> 

< Figure 4> 

< Figure 5> 

<Table 1> 

 

3.3.Accuracy Validation 

Accuracy results are tabulated in Table 2. RMSEs of chlorophyll a content estimations 

were 3.87 ± 0.50 μg cm-² for RF, 1.95 ± 0.36 μg cm-² for KELM, 3.41 ± 0.73 μg cm-² 

for DBN and 3.20 ± 0.98 μg cm-² for SVM. KELM had the best performance, although 

SVM had a better RMSE for round 2. Similar results were confirmed in chlorophyll b 

content estimations; however, RF was the best algorithm in some cases (ex. round 2). 

For estimating carotenoids, KELM was also the best algorithm; although, it was the 

worst in round 7. Overall, KELM was the most robust algorithm for estimating the three 

photosynthetic pigment contents of shade grown tea. 

 

<Table 2> 

 



3.4.Comparison between KELM and RF 

The strong performances of RF have been documented in previous studies (Montilla et 

al., 2009, Johansson et al., 2014). Therefore, this algorithm was used as a benchmark, 

and its sensitivity against reflectance was compared with that of KELM. Figure 6 shows 

the results of the DSA. For RF, the reflectance at the green peak had a greater influence 

on chlorophyll a content estimations than on chlorophyll b estimations; this tendency 

was obscure for the other algorithm. Figure 1 shows that chlorophyll a and b contents 

decreased with higher shading treatments and the extensive dependence on the green 

peak and red edge seemed useful for good estimations. For estimating chlorophyll b 

contents, the importance of the reflectance at 708, 713 and 753 nm occupied 53.3 % 

when RF was applied and the performance of RF for chlorophyll b content estimation 

was the second best averaged RMSE. However, the shifts of the green peak and REIP 

should be considered and that could be a risky strategy. Half of the estimation results 

had the worst accuracies (rounds 1, 4, 5, 7 and 10), although it sometimes gave precise 

estimations (rounds 2, 9 and 10). For estimating chlorophyll a, the influences were more 

serious and the results of RF, whose importance of the reflectance at 523, 700 and 769 

nm occupied 38.5 %, were worse than those of the others. 

The reflectance at the green peak and the end of the red edge also has great 

potential for estimating carotenoid content for RF; however, the influence on KELM 

regression was not clear. Although the differences in carotenoid contents were not 

significant among the four shading treatments, the shifts in reflectance were confirmed 

at the green peak and red edge (Figure 3). That may mislead the estimation based on 

RF, since the importance of the reflectance at only two wavelengths (start of the green 

peak and end of the red edge) occupied 48.1 %.  

 

< Figure 6> 



 

The chlorophyll to carotenoid ratio is an indicator for environmental stress in 

plants (Hendry and Price, 1993). The RMSE values of the estimated 

chlorophyll/carotenoid ratio for each machine learning algorithm were evaluated (Table 

3). KELM was the best algorithm for assessing the chlorophyll to carotenoid ratio with 

an RMSE of 0.36 ± 0.08. KELM shows great potential for detecting environmental 

stress based on field measurements, which is needed for better tea tree management.  

 

<Table 3> 

4. Conclusions 

We examined the relationships between reflectance and three photosynthetic pigment 

contents (chlorophyll a, b and carotenoid) using measurements from shade grown tea 

including measurements of plants exposed to high environmental stress. This study 

compared photosynthetic pigment content estimation accuracies among four algorithms 

(RF, KELM, DBN and SVM) from hyperspectral data.  

Among them, KELM yielded the most accurate estimation with 1.95 ± 0.36 μg 

cm-2, 1.08 ± 0.11 μg cm-2 and 0.68 ± 0.10 μg cm-2 for chlorophyll a, b and carotenoid, 

respectively. The results of this study demonstrate hyperspectral data obtained from 

FieldSpec4 can be used for in-situ measurements of leaf photosynthetic pigment 

contents. 

As the results, reflectance values at some wavelengths allowed for evaluation 

the risk of early mortalities as well as the appearance and ingredients of green tea before 

their cultivation. The results will also improve the evaluation of physiological properties 

of vegetation and usability for agricultural management using hyperspectral reflectance. 
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Table 

Table 1. Selected wavelengths (nm) based on GA. 

Photosynthetic pigment Wavelength (nm) 
Chlorophyll a 469, 474, 488, 502, 523, 581, 636, 696, 700, 769, 774 

Chlorophyll b 451, 462, 493, 526, 572, 581, 584, 614, 631, 634, 652, 672, 708, 713, 753, 
770, 771 

Carotenoid 476, 488, 503, 521, 539, 540, 548, 661, 689, 700, 712, 736, 743 
 

  



Table 2. RMSEs (μg cm-2) of estimation results for each machine learning algorithm. 

Repetition 
Chlorophyll a Chlorophyll b Carotenoid 

RF KELM DBN SVM RF KELM DBN SVM RF KELM DBN SVM 

Round01 2.94  1.15  2.65  5.49  1.34  0.96  1.19  1.25  0.74  0.53  0.75  0.67  

Round02 3.81  2.38  2.58  2.02  1.07  1.15  2.21  1.15  0.68  0.56  0.95  0.61  

Round03 3.38  2.26  4.65  4.06  1.53  1.23  1.70  1.55  0.81  0.82  0.94  0.95  

Round04 3.71  1.96  4.38  3.32  1.63  1.11  1.35  1.46  1.10  0.78  0.83  0.99  

Round05 4.52  1.69  3.98  1.89  1.68  0.98  1.30  1.25  0.70  0.77  0.59  0.58  

Round06 4.36  2.41  2.64  3.49  1.56  1.30  1.61  1.34  0.89  0.73  0.95  0.79  

Round07 4.61  2.04  2.74  2.87  1.31  1.00  1.20  1.23  0.97  0.54  0.84  0.55  

Round08 3.55  1.77  3.63  3.18  1.40  0.97  1.30  1.88  0.70  0.64  0.81  0.61  

Round09 4.06  1.70  3.78  2.93  1.42  1.07  1.54  2.78  0.86  0.73  0.77  0.56  

Round10 3.71  2.09  3.11  2.74  1.56  1.01  1.45  1.50  0.78  0.67  0.72  1.24  

Mean 3.87  1.95  3.41  3.20  1.45  1.08  1.48  1.54  0.82  0.68  0.81  0.76  

Standard deviation 0.50  0.36  0.73  0.98  0.17  0.11  0.29  0.46  0.13  0.10  0.12  0.38  

 

  



Table 3. RMSEs of chlorophyll/carotenoid ratio for each machine learning algorithm. 

  Measured value RMSE 
  Max. Min. Standard deviation RF  KELM  SVM  DBN  

Round01 5.83  2.95  0.79  0.62  0.27  0.67  0.35  
Round02 5.99  2.67  0.81  0.52  0.36  0.50  0.42  
Round03 5.93  2.67  0.86  0.53  0.29  0.87  0.79  
Round04 5.99  2.67  0.78  0.73  0.40  0.57  0.86  
Round05 5.99  2.95  0.86  0.66  0.55  0.35  0.60  
Round06 5.89  2.96  0.80  0.57  0.35  0.56  0.70  
Round07 5.83  2.95  0.78  0.66  0.35  0.58  0.61  
Round08 5.83  3.30  0.73  0.55  0.27  0.79  0.46  
Round09 5.93  2.96  0.74  0.61  0.39  0.52  0.49  
Round10 5.89  2.56  0.90  0.70  0.40  0.68  0.70  

Mean 5.91  2.86  0.80  0.61  0.36  0.61  0.60  
Standard deviation 0.06  0.21  0.05  0.07  0.08  0.14  0.16  

 

  



Figures 

Figure 1. Shading treatments conducted in this study. 

 

Figure 2. Boxplots of (a) chlorophyll a, (b) chlorophyll b, (c) carotenoid content and (d) 

the ratio of total chlorophyll to carotenoid. 

 

Figure 3. Mean reflectance spectra (solid lines) and standard deviations (thinner zones) 

on (a) 1 and (b) 11 May. 

 

Figure 4. Shifts of (a) green peak and (b) red edge positions. The central solid line 

represents the median; bars extend to the 95% confidence limits; dots represent outliers. 

 

Figure 5. Correlations between reflectance and chlorophyll a, b or carotenoid content 

for all measurements. 

 

Figure 6. DSA results for RF and KELM regression models. 


