

Relative importance of biological and human-associated factors for alien plant invasions in Hokkaido, Japan

メタデータ	言語: eng
	出版者:
	公開日: 2020-06-01
	キーワード (Ja):
	キーワード (En):
	作成者: 江川, 知花, 大澤, 剛士, 西田, 智子
	メールアドレス:
	所属:
URL	https://repository.naro.go.jp/records/3631

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

2		
3 4 5	1	Running title: Factors associated with plant invasion success
6 7	2	
8 9 10	3	Relative importance of biological and human-associated factors for alien
11 12	4	plant invasions in Hokkaido, Japan
13 14 15	5	
16 17	6	
18 19	7	Chika Egawa ^{1,*} , Takeshi Osawa ^{1,2} , Tomoko Nishida ³ , Yasuto Furukawa ⁴
20 21 22	8	
23 24	9	
25 26	10	¹ Institute for Agro-Environmental Sciences, National Agriculture and Food Research
27 28 29	11	Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
30 31	12	² Current address: Faculty of Urban Environmental Sciences, Tokyo Metropolitan University,
32 33	13	1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
34 35 36	14	³ Headquarters, National Agriculture and Food Research Organization, 3-1-1 Kannondai,
37 38	15	Tsukuba, Ibaraki, 305-4517, Japan
39 40	16	⁴ Rakuno Gakuen University, 582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido, 069-8501,
41 42 43	17	Japan
43 44 45	18	
46 47	19	* Corresponding author (C. Egawa)
48 49	20	Email: cegawa@affrc.go.jp
50 51 52	21	Tel: +81 29 838 8271
53 54 55 56 57 58	22	Fax: +81 29 838 8271
59 60		

 $\mathbf{2}$

24 Abstract

25 Aims

The invasion success of alien plants is strongly affected by both biological and humanassociated factors. Evaluation of the relative contribution of each factor is important not only for the further understanding of invasion processes but also for the better management of invasion risk, particularly in protected areas of high conservation priority. Here, we quantified the relative importance of species biological traits and association with a human activity, i.e., agriculture, in explaining the invasion success of alien plants across the entire region and in protected areas in Hokkaido, Japan.

33 Methods

As a quantitative measure of invasion success, the distribution extent of naturalized populations across the entire prefecture and in protected areas was calculated for 63 alien species with equal residence time based on species occurrence records at a spatial resolution of 5-km mesh grid units. For each species, we identified seven biological traits (seed mass, dispersal mode, maximum plant height, capability of vegetative reproduction, flowering start time and period, and life span) and two human-associated factors (introduction purpose and cultivation frequency for agricultural use). Cultivation frequency was determined based on the frequency of seed-sowing in pastures: 1. not sown, 2. accidentally sown as a seed contaminant, and 3. intentionally sown for commercial cultivation. The importance of biological traits and human-associated factors in explaining the distribution extent was determined using an information-theoretic approach. Important Findings In explaining the distribution extent across the entire prefecture, species biological traits

47 and human-associated factors showed comparable importance; cultivation frequency

48 exhibited the highest importance value closely followed by seed mass, maximum height,

and flowering period. In contrast, when focusing on protected areas, human association was more important than biological traits, as indicated by the greatest importance of cultivation frequency and much lower values for most biological traits. The results demonstrated that species biological traits and human association almost equally contributed to invasion success across the entire region, while invasions into protected areas were more attributable to human association than to biological traits. We highlight that the control of propagule pressure associated with artificial cultivation may be key to preventing further invasions into protected areas. Keywords: agricultural use, biological invasion, distribution, nature reserve, pasture plants CO PO IO

60 Introduction

The introduction of alien plant species that can spread in natural habitats still continues or has even accelerated worldwide (Seebens et al. 2017). Clarifying the mechanisms determining invasion success is a pressing matter for managing the risk of alien plants (Groves et al. 2001). The invasiveness of alien plants is largely determined by the biological traits of species (Rejmánek et al. 2005), of which several have been found to promote invasion. For example, the capability of vegetative reproduction is often advantageous for invasion success because vegetative reproduction promotes rapid range expansion in new sites where breeding mates are absent (Pyšek and Richardson 2007; Drenovsky et al. 2012). In addition to the biological traits of species, recent studies have emphasized that association with human activity must be considered when explaining the invasion success of alien plants (Thuiller et al. 2006; Dehnen-Schmutz et al. 2007; Gravuer et al. 2008; Maurel et al. 2016) because species that are involved with economic activities, such as agriculture and horticulture, are often conferred a propagule-pressure advantage and are thus more likely to succeed in establishing and spreading in landscapes than species with no relations (Lonsdale 1994; Lockwood et al. 2005; Shimono and Konuma 2008). However, although the influences of both biological traits and human association on alien plant invasions are obvious, the extent to which each factor contributes remains an open question. Assessments of the relative importance of biological and human-associated factors in invasion success are necessary to further understand the invasion mechanisms of alien plants.

81 From a conservation perspective, clarification of the mechanisms of invasion in 82 protected areas is of particular interest because the establishment of alien species is most 83 problematic in protected areas, where the conservation of native biodiversity is mandated 84 (Foxcroft *et al.* 2013). Protected areas generally maintain natural vegetation with fewer

anthropogenic disturbances, and because many alien species fail to establish without artificial disturbances that increase resource availability (Rejmánek et al. 2005; Colautti et al. 2006), the invasibility of vegetation in protected areas is potentially lower than that of vegetation in surrounding areas, including those subjected to human disturbance (Rose and Hermanutz 2004; Pauchard et al. 2013). Considering the low invasibility of the involved vegetation, it is probable that the relative importance of species biological traits and human association in determining invasion success in protected areas differs from the general patterns covering the entire area in the region. Specifically, human association may play a more important role than species biological traits in invasions into protected areas because an extrinsic supply of propagules is vital for the invasion of areas with environmental resistance (Simberloff 2009), whereas such a supply may not be essential for successful invasion into disturbed vegetation outside protected areas. Evaluation of the relative contribution of species biological traits and human association to invasion success in protected areas and across entire regions, including disturbed areas, will provide essential information for understanding general and protected-area-specific invasion mechanisms and potentially effective management solutions for alien plants. Here, we quantified the relative importance of species biological traits and association with human activity to the invasion success of alien plants in protected areas and across the entire region of Hokkaido Prefecture, northern Japan, using distribution extent as a quantitative measure of invasion success (Wilson et al. 2007; Pyšek et al. 2011; Akasaka et al. 2012). As a human activity that can promote alien plant invasions, we considered agriculture because it is the means by which large numbers of alien plant species are introduced and distributed into novel locations (Lonsdale 1994; Driscoll et al. 2014; Overholt and Franck 2017). In Hokkaido, grassland-based dairy farming has been very common, and many pastures are adjacent to nature reserves (Egawa 2017). Therefore, we

1	110	expected that association with pastoral agriculture would be an important factor in
1	111	explaining the invasion success of alien plants in protected areas as well as the entire area
1	112	of the prefecture, so we incorporated two agriculture-related variables, i.e., introduction for
]	113	the purpose of agricultural use (representing the association at the time of introduction) and
]	114	cultivation frequency (representing the association after the introduction). We specifically
]	115	asked the following questions: What is the relative importance of biological and human-
]	116	associated factors in determining invasion success in protected areas and across the entire
]	117	prefecture, and what are the main factors that should be managed to prevent further
1	118	invasions into protected areas?
]	119	
	120	Materials and methods
1	121	Study site
-	122	Overview of Hokkaido
]	123	The study site, Hokkaido, is the northernmost prefecture in Japan and consists of one main
1	124	island and several small islands, with a total area of 8,345,000 ha (Fig. 1a). The climate in
1	125	Hokkaido is categorized as a temperate subarctic climate with an annual precipitation of
1	126	800–1500 mm and an annual mean temperature of 6–10°C (Matsushita et al. 2004).
1	127	Hokkaido Prefecture remained largely unexplored until the beginning of the land
-	128	development effort led by the Meiji government in 1869 (Japan Livestock Industry
]	129	Association 1976). Since that time, the land was gradually developed, but the area of
]	130	pastures was less than 65,000 ha, which was 0.8% of the whole Hokkaido area, as of 1960
]	131	(Hokkaido Agricultural Experiment Station 1973). Large-scale, intensive pasture
1	132	development in Hokkaido began in the 1960s, which dramatically increased the area of
]	133	pastures (Japan Livestock Industry Association 1976), although unprofitable pastures were
]	134	often abandoned (Hokkaido Regional Development Bureau 1967; Tateishi 1985). As of

2005, pastures occupied 515,900 ha, constituting 6% of the whole Hokkaido area. By the end of the Meiji era in 1912, more than 50 alien plant species had been intentionally introduced to Hokkaido for use in pastoral agriculture (Nishimura 1988), although many were recognized as unsuitable and not used for commercial cultivation (Japan Livestock Industry Association 1976). Since 1914, the Hokkaido government has regularly designated well-qualified species as recommended based on the results of cultivation trials and has encouraged their cultivation. Most species that have been commercially cultivated to date were the government-recommended species introduced during the Meiji era, although the introduction of pasture plants continued after this period. Hokkaido currently has six national, five quasi-national, and 12 prefectural nature parks, in which several types of nature reserves have been established to conserve native landscapes and biodiversity. Among all the types of nature reserves, the special protection areas and the first type of the protection areas (hereafter, these two reserve types are collectively called protected areas) are considered the most important territories with the highest conservation priority and are protected by the strictest regulations. Protected areas account for 3.6% of the total area of Hokkaido. As commonly found in various countries (Meiners and Pickett 2013), nature parks in Hokkaido lie within a matrix of humandisturbed land and some are directly adjacent to pastures (Egawa 2017). Vegetation across the entire area and in protected areas in Hokkaido According to the vegetation map from 1999 created by the Ministry of the Environment of Japan (the associated GIS data are available at http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg Accessed 26 Jul 2017), the percentages of human-disturbed vegetation

- 158 (including urban areas, agricultural land, secondary forest and grassland, and planted
- 59 159 forest), natural vegetation (including wet and dry grasslands and forest) and other areas

(including open water areas) across Hokkaido are 46.9%, 45.3%, and 7.8%, respectively (Table S1). Heavily disturbed areas, i.e., urban areas and agricultural land, account for 20.5% of the whole prefecture. On the other hand, most protected areas consist of natural vegetation (84.7%), and the percentage of human-disturbed vegetation is small (2.8%). Other areas including open water occupy 12.4% of the total protected areas. Most of the human-disturbed vegetation in protected areas is secondary grasslands and forests, and the percentage of urban areas and agricultural land is 0.1% of the total protected areas (Table S1).

169 Study species and their distribution data

We limited our study species to those introduced (either intentionally or accidentally) to Hokkaido during the same period, i.e., the Meiji era from 1869 to 1912, to eliminate the effects of residence time, and we focused on identifying the influences of species biological traits and human association. Candidate species were identified based on Nishimura (1988) and Igarashi (2001). Only herbaceous species were considered since there were very few tree species introduced during the Meiji era (Igarashi 2001). Because nearly 100 years have passed since their introduction, candidate herbaceous species likely had sufficient time to expand their distribution ranges in Hokkaido. The plant nomenclature was based on YList (http://ylist.info Accessed 29 Jan 2017).

179To estimate the distribution extent of alien species, we used occurrence records at a180spatial resolution of 5-km mesh grid units (the Five-Fold Mesh) in the Hokkaido Blue List181(BL) alien species database (http://bluelist.ies.hro.or.jp/ Accessed 1 March 2017; Fig. 1b).182The occurrence records in the BL database were compiled from 44,833 observations of183naturalized (i.e., self-sustaining) populations of 390 alien plant species from flora surveys184conducted from 1986 to 2009. The occurrence records do not include artificially cultivated

populations, i.e., all the data reference wild populations established outside of cultivation. We assumed that all the observed populations were present during the survey period, and the total number of grid cells in which each species was observed represented its current distribution extent. We may have underestimated the distribution extent of species since we treated species as not being distributed in a grid cell when the occurrence of the species was not recorded. However, because our focus was on quantifying the relative differences in the distribution extent among species, the possibility of underestimation should not affect our results. Among 112 herbaceous species that arrived in Hokkaido during the Meiji era, we obtained distribution data for 63 species belonging to 11 families and used these species for further analyses (for the species list, see Table S2). For each species, we calculated the total number of grid cells in which the species was observed to obtain its distribution extent across Hokkaido (hereafter, the total distribution extent). We also counted the number of occurrence grid cells that included protected areas in national, quasi-national, and prefectural nature parks (hereafter, the distribution extent in and around protected areas; Lies Fig. 1c). **Biological and human-associated factors** For each of the 63 study species, we identified the following biological and human-associated factors that could explain the distribution extent (Table 1; for the complete dataset, see Table S2). Species biological traits Seven biological traits of species that are known to be associated with invasiveness were selected: seed mass, dispersal mode, maximum plant height, capability of vegetative reproduction, flowering start time and period, and life span (Pyšek and Richardson 2007; Gravuer et al. 2008). We collected information on these traits for each species from the

published literature (Osada 1976, 2002; Satake et al. 1982; Shimizu et al. 2001; Nakayama et al. 2001; Shimizu 2003; Asai 2014; Tamme et al. 2014) and publicly available online databases (Kew Seed Information Database: http://plants.usda.gov/ Accessed 1 Feb 2017; Online Atlas of the British and Irish Flora: https://www.brc.ac.uk/Plantatlas/ Accessed 1 Feb 2017). *Introduction purpose* We identified species that were intentionally introduced for pastoral purposes based on information from Morita (1981), Nishimura (1988), and Igarashi (2001). A few species that were intentionally introduced for other purposes and species that had accidentally arrived were categorized as "others". *Cultivation frequency in pastures* All 63 alien species were assigned to one of three cultivation levels based on the frequency of seed-sowing in pastures: species that have been intentionally sown for commercial cultivation belonged to Level 3; species that have not been sown intentionally for commercial cultivation but could have been sown accidentally by becoming pasture seed contaminants belonged to Level 2; and species that have not been sown intentionally or accidentally belonged to Level 1. Two government bulletins—the lists of recommended pasture species in Hokkaido from 1914 to 2009 and the seed demand statistics of pasture

Japan from 1981 to 2000 (data were not available before 1980 or after 2000)—were used to
identify the intentionally sown species. Species that had contaminated pasture seeds
imported into Hokkaido were drawn from the lists of pasture seed contaminants in two

publications, Japan Forage Crop Seeds Association (1972) and Murayama *et al.* (1989).

plants in Hokkaido summarized by the Ministry of Agriculture, Forestry and Fisheries of

The lists of pasture seed contaminants that we obtained only covered the 1970s and 1980s, but this period was considered to be the most important for the establishment and spread of pasture-related alien species in natural habitats because intensive pasture development in Hokkaido occurred during the 1970s and 1980s. According to the number of contaminated seeds per unit amount of pasture seeds described in Murayama et al. (1989), the contamination rate was considered to be less than 1% for all species, suggesting that contaminants had much weaker association with agriculture compared to intentionally sown species. The species that were not listed in any of the above-described references were assumed to be unsown species in pastures with no association with agriculture. Statistical analyses All statistical analyses were performed using the R Environment for Statistical Computing, version 3.3.1 (R Core Team 2016). We employed an information-theoretic approach to assess the relative importance of seven biological traits and two human-associated factors in explaining the distribution extent of alien species (Burnham and Anderson 2002). Generalized linear mixed-effects models (GLMM) with a negative binomial error distribution and a log-link function were used for our analyses because of their effectiveness in analyzing non-normal and overdispersed count data (Crawley 2005; Faraway 2006). We first constructed a GLMM including the total number of occurrence grid cells (the total distribution extent) as the response variable and seven biological and two human-associated factors as explanatory variables as a global model, using the *lme4* package in R. To account for phylogenetic relatedness, we incorporated family as a random intercept in the model. We did not include interaction terms in the global model because our focus was on evaluating the importance of individual variables. All explanatory variables in the global model were tested for multicollinearity by calculating variance

inflation factors (VIFs) (Dormann et al. 2013). The VIFs for all variables were much lower than 10, the general threshold value for detecting collinearity problems, so there was no evidence of multicollinearity among the variables (Table 2). We then generated a set of models that included all possible combinations of explanatory variables incorporated in the global model and calculated the Akaike information criterion adjusted for small sample sizes (AICc) and the Akaike weight for each model using the MuMIn package. Likelihood-ratio-based R^2 values for each model were also calculated to evaluate the goodness of fit. The relative importance value of each variable was obtained by summing the Akaike weights across all models in which the variable occurred (Burnham and Anderson 2002). The relative importance ranges from 0 to 1, with values closer to 1 indicating greater importance. The direction of the effects (i.e., negative or positive) of variables with high importance was determined based on the coefficients of the best model with the lowest AICc that included the variables. In addition to calculating the relative importance value of each variable, we assessed which of a set of biological or human-associated factors would be more effective in describing the total distribution extent by comparing the AICc of a model containing seven biological variables alone (hereafter, the biological model) and that of a model containing two human-associated variables alone (hereafter, the humanassociation model). In addition to the total distribution extent, we evaluated the importance of biological and human-associated factors in explaining the distribution extent in and around protected areas by constructing another global model that included the number of occurrence grid cells that included protected areas as the response variable. **Results**

The total distribution extent across the entire prefecture greatly differed among species, i.e.,
it ranged from a minimum of 2 grid cells (*Trifolium incarnatum* L.) to a maximum of 1284

309	Roles of biological traits and human association in alien plant invasions
308	Discussion
307	
306	vegetatively but negatively correlated with seed mass (Table 2; Fig. 2b).
305	positively correlated with cultivation level, flowering period, and the ability to reproduce
304	model demonstrated that the distribution extent in and around protected areas was
303	(AICc = 541.1) in describing the distribution extent in and around protected areas. The best
302	association model was clearly more effective (AICc = 531.1) than the biological model
301	importance value of 0.7 (Table 2). In contrast to the total distribution extent, the human-
300	mass, for which the relative importance was 0.94; no other variables exceeded an
299	importance of cultivation frequency again showed the highest value of 1.0 followed by seed
298	For explaining the distribution extent in and around protected areas, the relative
297	with seed mass (Table 2; Fig. 2a).
296	height, flowering period, and the ability to reproduce vegetatively but negatively correlated
295	extent across the prefecture was positively correlated with cultivation frequency, maximum
294	latter, respectively). The coefficients of the best model showed that the total distribution
293	and the biological model were almost the same (AICc = 845.4 and 845.8 for the former and
292	high importance at 0.90 and 0.86, respectively. The AICc of the human-association model
291	comparable importance, 0.99 (Table 2). Maximum height and flowering period were also of
290	frequency was highest among all the variables with the value of 1.0, but seed mass showed
289	To explain the total distribution extent, the relative importance of cultivation
288	the median value was 11.
287	Amaranthus retroflexus L. The maximum value, 134, was observed for T. repens L., and
286	that included protected areas was 0 for several species, such as Poa compressa L. and
285	grid cells (Dactylis glomerata L.) with a median of 178 grid cells. The number of grid cells

Many previous studies have emphasized the influences of both biological and humanassociated factors on plant invasion success (Thuiller et al. 2006; Dehnen-Schmutz et al. 2007; Gravuer et al. 2008; Maurel et al. 2016), but the extent to which each factor contributes has remained unclear, particularly for invasions into protected areas of high conservation priority. In the present study, we found that the relative importance of biological and human-associated factors was comparable in explaining the total distribution extent of alien plants, suggesting that species biological traits and human association almost equally contributed to invasion success across the entire study region. In contrast, when focusing on invasion in protected areas, human association was more important than biological traits, as indicated by the higher importance of cultivation frequency relative to most biological traits as well as the better predictive power of the human-association model compared to the biological model. Because many alien species require anthropogenic disturbances to establish (Rejmánek et al. 2005; Colautti et al. 2006), natural vegetation in protected areas subjected to no or only minor disturbances is generally resistant to biological invasion, resulting in fewer occurrences of alien species in these areas compared to the surroundings (Rose and Hermanutz 2004; Pauchard et al. 2013). In Hokkaido, 85% of the protected areas consist of natural vegetation, and these environments are likely to be unsuitable for invaders. Nevertheless, we found a clear correlation between cultivation frequency and the distribution extent in and around protected areas, and species that were frequently cultivated in pastures were widely distributed in such areas. In Hokkaido, many nature reserves are adjacent to pastures, allowing direct seed flow to occur (Egawa 2017), and the number of reserve visitors—a major vector for dispersing the seeds of alien species into protected areas (Lonsdale 1999)—is very high (ca. 40 million people / year, Ministry of the Environment of Japan: http://www.env.go.jp/park/doc/data.html Accessed 20 April 2018).

Therefore, species that are frequently cultivated in pastures would have numerous opportunities to disperse their seeds into protected areas, and this propagule supply associated with cultivation would have played a vital role in such invasions. Furthermore, we found that introduction purpose was not correlated with invasion success in protected areas as well as in the entire region. These findings suggest that successful invasion into protected areas would be determined by a long-term human association after introduction. Although the best model showed that three out of seven examined species traits were correlated with the distribution extent in and around protected areas, the importance of most traits was moderate or relatively low, except for seed mass. The species traits that are known to be related to invasiveness, such as a high maximum height, early flowering, long reproductive period, and ability to vegetatively reproduce, are common in ruderals or competitors, which often become successful invaders in new locations (Balogh et al. 2003). Rose and Hermanutz (2004) predicted that the strategies of ruderal/competitor plants can be inefficient for establishment in undisturbed natural habitats, which are relatively resource-limited, because these strategies are generally resource intensive. Our results are consistent with their prediction, suggesting that species traits associated with ruderal/competitor plants, which are generally considered to be invasive, may not always be effective for establishment and/or spread in natural vegetation subjected to minor disturbances in protected areas. Among the examined species traits, seed mass was of high importance at 0.94 and exhibited a clear negative correlation with the distribution extent in and around protected areas. Small seeds can easily adhere to the body of transporters and can be dispersed widely (Fenner and Thompson 2005; Cousens et al. 2008), even if they are not specially adapted for dispersal vectors (Quick and Houseman 2017). These advantages of small-seeded species may have played a considerable role in the colonization of and/or spread into protected areas.

We found that species biological traits and human association contributed almost equally to invasion success across the entire prefecture, as both the biological and humanassociation models indicated almost equal effectiveness in describing the total distribution extent. Similarly, the relative importance value of seed mass was comparable to that of cultivation frequency, and two other species traits, maximum height and flowering period, were also of high importance. High maximum height and long flowering season are noted to be adaptive in nutrient-rich, disturbed habitats (Grime 1977). In Hokkaido, humandisturbed vegetation, such as urban areas, accounted for ca. 50% of the land. Therefore, high plant height and long reproductive phenology would have substantially contributed to invasion into such human-disturbed areas in the prefecture. In conclusion, this study demonstrated that the relative contribution of biological and human-associated factors to invasion success can differ between the entire-area scale and the protected-area scale. We highlight that alien plant invasions into protected areas with high conservation priority would be more attributable to human association than to species-Lip inherent biological traits. Implications for the prevention of further invasions into protected areas Preventing further invasions of alien plants into protected areas is a pressing matter in conserving native biodiversity (Foxcroft et al. 2013). Our finding regarding the great importance of cultivation frequency in explaining the distribution extent in protected areas suggests that reducing the propagule pressure associated with the commercial cultivation of alien species can be key to preventing future invasions into protected areas. For example, seed dispersal from cultivated settings needs to be minimized through effective management, such as the establishment of sufficient marginal distances between cultivated and surrounding areas. In addition, in the case of agriculture, it may be necessary to manage

abandoned farmland because it can act as a vigorous source of propagules of alien plants
(Pándi et al. 2014).

Another implication of our study is that attention should be paid when predicting the invasiveness of alien species from biological traits in protected areas because the traits that are generally useful for such predictions are not always valid when focusing on protected areas. For example, maximum plant height was an important predictor of invasion success across the entire prefecture (relative importance = 0.90) in our study, but this was not the case in protected areas (relative importance = 0.41). Conversely, some species traits might contribute to invasions into protected areas but not over entire areas. Future studies exploring species traits that can be associated with invasiveness in natural vegetation subjected to minor disturbances would provide useful information to effectively screen for potential invaders in protected areas.

398 Funding

This work was supported by the first author's institution, National Agriculture and Food
Research Organization [1E16N104L1G00].

402 Acknowledgments

We thank the Biodiversity Division of the Hokkaido government and the Feed Division of the Ministry of Agriculture, Forestry and Fisheries of Japan for the permission to use their data, K. Hirano and K. Sanada for their advice in collecting information on seed demand statistics, N. Iwasaki for his support in GIS analysis, and A. Tomioka for her assistance in compiling information on species traits.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
54 25	
32	
30	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52 52	
55 5⊿	
55	
56	
57	
58	
59	
60	

409	References
410	Akasaka M, Takada M, Kitagawa R, et al. (2012) Invasive non-native species attributes and
411	invasion extent: examining the importance of grain size. J Veg Sci 23:33-40.
412	Asai M (2014) Weeds of Japan in Colors. Tokyo, Japan: Zenkoku Nouson Kyouiku
413	Kyoukai (in Japanese).
414	Balogh L, Botta-Dukát Z, Dancza I (2003) What kind of plants are invasive in Hungary? In
415	Child LE, Brock JH, Brundu G, et al. (eds). Plant Invasions: Ecological Treats and
416	Management Solutions. Leiden, The Netherlands: Backhuys Publishers, 131–146.
417	Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference. Heidelberg,
418	Germany: Springer.
419	Crawley MJ (2005) Statistics: An Introduction Using R. Chichester, UK: John Wiley and
420	Sons.
421	Colautti RI, Grigorovich IA, MacIsaac HJ (2006) Propagule pressure: a null model for
422	biological invasions. Biol Invasions 8:1023-1037.
423	Cousens R, Dytham C, Law R (2008) Dispersal in Plants: A Population Perspective.
424	Oxford, UK: Oxford University Press.
425	Dehnen-Schmutz K, Touza J, Perrings C, et al. (2007) The horticultural trade and
426	ornamental plant invasions in Britain. Conserv Biol 21:224–231.
427	Dormann CF, Elith J, Bacher S, et al. (2013) Collinearity: a review of methods to deal with
428	it and a simulation study evaluating their performance. <i>Ecography</i> 36 :27–46.
429	Driscoll DA, Catford JA, Barney JN, et al. (2014) New pasture plants intensify invasive
430	species risk. Proc Natl Acad Sci USA 111:16622-16627.
431	Drenovsky RE, Grewell BJ, Dantonio CM, et al. (2012) A functional trait perspective on
432	plant invasion. Ann Bot 110:141–153.
433	Egawa C (2017) Wind dispersal of alien plant species into remnant natural vegetation from

2		
3	434	adjacent agricultural fields. <i>Glob Ecol Conserv</i> 11 :33–41.
5	101	
6 7	435	Faraway JJ (2006) Extending the Linear Model with R: Generalized Linear, Mixed Effects
8 9	436	and Nonparametric Regression Models. Boca Raton, FL: Chapman and Hall.
10 11 12	437	Fenner M, Thompson K (2005) The Ecology of Seeds, Cambridge, UK: Cambridge
13 14	438	University Press.
15 16	439	Foxcroft LC, Pyšek P, Richardson DM, et al. (2013) Plant Invasions in Protected Areas.
17 18 19	440	Heidelberg, Germany: Springer.
20 21	441	Gravuer K, Sullivan JJ, Williams PA, et al. (2008) Strong human association with plant
22 23	442	invasion success for Trifolium introductions to New Zealand. Proc Natl Acad Sci
24 25 26	443	<i>USA</i> 105 :6344–6349.
20 27 28	444	Groves RH, Panetta FD, Virtue JG (2001) Weed Risk Assessment. Collingwood, Australia:
29 30	445	CSIRO Publishing.
31 32 22	446	Grime JP (1977) Evidence for the existence of three primary strategies in plants and its
33 34 35	447	relevance to ecological and evolutionary theory. Am Nat 111:1169–1194.
36 37	448	Hokkaido Agricultural Experiment Station (1973) Trends and Current Status of Grassland
38 39	449	Statistics in Hokkaido. Sapporo, Japan: Hokkaido Agricultural Experiment Station (in
40 41 42	450	Japanese).
43 44	451	Hokkaido Regional Development Bureau (1967) Report of the Comprehensive Research in
45 46	452	Sarobetsu Region: Actual Situation at the Beginning of Sarobetsu Region
47 48 40	453	Development. Sapporo, Japan: Hokkaido Regional Development Bureau (in
49 50 51	454	Japanese).
52 53	455	Igarashi H (2001) The Handbook of Naturalized Plants in Hokkaido. Sapporo, Japan:
54 55	456	Hokkaido Research Institute for Wild Plants (in Japanese).
50 57 58	457	Japan Forage Crop Seeds Association (1972) Research Data of Forage Crop Seeds, Vol. 3.
59 60	458	Tokyo, Japan: Japan Forage Crop Seeds Association (in Japanese).

3		
4	459	Japan Livestock Industry Association (1976) <i>History of Grasslands and Forages in Japan</i> .
5 6	400	Talvia Japan Japan Livestock Inductor Association (in Japanese)
7	400	Tokyo, Japan. Japan Livestock industry Association (in Japanese).
8 9	461	Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining
10 11 12	462	species invasions. Trends Ecol Evol 20:223–228.
12 13 14	463	Lonsdale WM (1994) Inviting trouble: introduced pasture species in northern Australia.
15 16	464	<i>Aust J Ecol</i> 19 :345–354.
17 18 19	465	Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility.
20 21	466	<i>Ecology</i> 80 :1522–1536.
22 23	467	Matsushita B, Xu M, Chen J, et al. (2004) Estimation of regional net primary productivity
24 25 26	468	(NPP) using a process-based ecosystem model: how important is the accuracy of
27 28	469	climate data? <i>Ecol Modell</i> 178 :371–388.
29 30	470	Maurel N, Hanspach J, Kühn I, et al. (2016) Introduction bias affects relationships between
31 32 33	471	the characteristics of ornamental alien plants and their naturalization success. Glob
34 35	472	<i>Ecol Biogeogr</i> 25 :1500–1509.
36 37	473	Meiners SJ, Pickett STA (2013) Plant invasions in protected landscapes: exception or
38 39 40	474	expectation? In Foxcroft LC, Pyšek P, Richardson DM, et al. (eds). Plant Invasions in
40 41 42	475	Protected Areas. Heidelberg, Germany: Springer, 43-60.
43 44	476	Morita H (1981) An outline of alien weeds in Hokkaido and some problems on their
45 46 47	477	control. J Weed Sci Tec 26:8–22.
47 48 49	478	Murayama S, Sekijo T, Tejima K, et al. (1989) Mixed foreign seeds in the import grasses
50 51	479	seeds, part 2: discussion of family and species of mixed weed seeds in the import
52 53	480	grasses seeds. Journal of Hokkaido Society of Grassland Science 23:65–74.
54 55 56	481	Nakayama S, Inokuchi M, Minamitani T (2001) Seeds of Wild Plants in Japan. Sendai,
57 58	482	Japan: Tohoku University Press (in Japanese).
59 60	483	Nishimura N (1988) Introduction of pasture plants and formation of plant communities in

2		
3 4	484	pastures. In Yano N (ed). Vegetation in Japan: Ecology of Invasions and
5 6	485	Disturbances. Tokyo, Japan: Tokai University Press, 30-39 (in Japanese).
/ 8 0	486	Osada T (1976) Colored Illustrations of Naturalized Plants of Japan. Osaka, Japan:
10 11	487	Hoikusha Publishing (in Japanese).
12 13	488	Osada T (2002) <i>Illustrated Grasses of Japan</i> . Tokyo, Japan: Heibonsha Publishers (in
14 15	489	Japanese).
16 17 18	490	Overholt WA, Franck AR (2017) The invasive legacy of forage grass introductions into
19 20	491	Florida. <i>Nat Area J</i> 37 :254–264.
21 22	492	Pándi I, Penksza K, Botta-Dukát Z, et al. (2014) People move but cultivated plants stay:
23 24 25	493	abandoned farmsteads support the persistence and spread of alien plants. <i>Biodivers</i>
26 27	494	<i>Conserv</i> 23 :1289–1302.
28 29	495	Pauchard A, Fuentes N, Jiménez A, et al. (2013) Alien plants homogenise protected areas:
30 31 32	496	evidence from the landscape and regional scales in south central Chile. In Foxcroft
33 34	497	LC, Pyšek P, Richardson DM, et al. (eds). Plant Invasions in Protected Areas.
35 36 27	498	Heidelberg, Germany: Springer, 191–208.
37 38 39	499	Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where
40 41	500	do we stand? In Nentwig W (ed). Biological Invasions. Heidelberg, Germany:
42 43	501	Springer, 97–125.
44 45 46	502	Pyšek P, Jarošík V, Pergl J (2011) Alien plants introduced by different pathways differ in
47 48	503	invasion success: unintentional introductions as a threat to natural areas. PLoS ONE
49 50	504	6 :e24890, doi:10.1371/journal.pone.0024890.
52 53	505	Quick ZI, Houseman GR (2017) Assessing wind and mammals as seed dispersal vectors in
54 55	506	an invasive legume. Weed Res 57: 35–43.
56 57 58	507	R core team (2016) R: A Language and Environment for Statistical Computing. Vienna,
59 60	508	Austria: R Foundation for Statistical Computing. http://www.r-project.org/.

1 ว		22
2 3		
4 5	509	Rejmánek A, Richardson DM, Higgins SI, et al. (2005) Ecology of invasive plants: state of
6 7	510	the art. In Mooney H, Mack RN, McNeely JA, et al. (eds). Invasive Alien Species: A
8 9	511	New Synthesis. Washinton DC: Island Press, 104–161.
10 11	512	Rose M, Hermanutz L (2004) Are boreal ecosystems susceptible to alien plant invasion?
12 13 14	513	Evidence from protected areas. Oecologia 139:467-477.
15 16	514	Satake Y, Ohi J, Kitamura S, et al. (1982) Wild Flowers of Japan, Herbaceous Plants I, II,
17 18	515	Ш. Tokyo, Japan: Heibonsha Publishers (in Japanese).
19 20 21	516	Seebens H, Blackburn TM, Dyer E, et al. (2017) No saturation in the accumulation of alien
21 22 23	517	species worldwide. Nat Commun 8:14435.
24 25	518	Shimizu N, Morita H, Hirota S (2001) Pictures of Japanese Alien Plants: 600 Plant
26 27	519	Invaders, Tokyo, Japan: Zenkoku Nouson Kyouiku Kyoukai (in Japanese).
28 29 30	520	Shimizu T (2003) Naturalized Plants of Japan. Tokyo, Japan: Heibonsha Publishers (in
31 32	521	Japanese).
33 34	522	Shimono Y, Konuma A (2008) Effects of human-mediated processes on weed species
35 36 27	523	composition in internationally traded grain commodities. Weed Res 48:10–18.
37 38 39	524	Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol
40 41	525	Evol Syst 40 :81–102.
42 43	526	Tamme R, Götzenberger L, Zobel M, et al. (2014) Predicting species' maximum dispersal
44 45 46	527	distances from simple plant traits. <i>Ecology</i> 95 : 505–513.
47 48	528	Tateishi T (1985) Sand dunes on the coast of the sea of Okhotsk studied from the viewpoint
49 50	529	of land reclamation. Proceedings of the Institute of Natural Sciences, Nihon
51 52 53	530	University 20 :11–32.
55 54 55	531	Thuiller W, Richardson DM, Rouget M, et al. (2006) Interactions between environment,
56 57	532	species traits, and human uses describe patterns of plant invasions. Ecology 87:1755-
58 59 60	533	1769.

1 2		23
3 4 5	534	Wilson JRU, Richardson DM, Rouget M, et al. (2007) Residence time and potential range:
$\begin{array}{c} 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 9\\ 30\\ 1\\ 32\\ 33\\ 45\\ 36\\ 37\\ 38\\ 9\\ 40\\ 41\\ 43\\ 44\\ 5\\ 46\\ 7\\ 48\\ 9\\ 50\\ 1\\ 52\\ 34\\ 55\\ 57\\ 58\\ 57\\ 58\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 58\\ 56\\ 57\\ 56\\ 57\\ 58\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 56\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 56\\ 57\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56\\ 56$	535	Wilson JRU, Richardson DM, Rouget M, et al. (2007) Residence time and potential range: crucial considerations in modelling plant invasion. <i>Divers Distrib</i> 13:11–12.
60		

Table 1: Summary of the variables examined in this study. Median, maximum, and minimum values are shown for continuous variables, and the levels are shown with the number of included species in parentheses for categorical variables.

Variable type	Median values (max, min) or levels (number of species)
Categorical	Pastoral use (24), others (39)
Categorical	Level 1: Not sown (24), Level 2: Accidentally sown as a contaminant (26), Level 3: Intentionally sown for cultivation (13)
Continuous	0.6 (10.9, 0.01)
Categorical	Unspecialized (53), animal (2), wind (8)
Continuous	80 (300, 15)
Categorical	Capable (30), not capable or unknown (33)
Continuous	5 (8, 3)
Continuous	2 (9, 1)
Categorical	Annual or biennial (28), perennial (35)
	C.C.
	Variable type Categorical Categorical Continuous Categorical Continuous Categorical Continuous Categorical

 Table 2: Variance inflation factors (VIFs) and the relative importance (w_i) of each variable included in the global models, and the coefficients and SE of the best model with the lowest AICc. The relative importance was calculated by summing the Akaike weights across all models in which the variable occurs (N = 256).

	Respo	onse: To	otal distribution	n extent	Response: Distribution extent in and around protected areas					
	VIF	VIF W_i Best model AICc: 824.1 R^2 : 0.75 Akaike weight: 0.111			VIF	Wi	Best model AICc: 516.9 R^2 : 0.75 Akaike weig) 2ht: 0.076		
Variables			Coefficient	SE			Coefficient	SE		
(Intercept)		•	3.946	0.412			1.575	0.514		
Human-associated factors										
pastoral use	1.40	0.26	-		1.31	0.26	-			
Cultivation frequency		1.00				1.00				
- Level 2	2.29		0.193	0.343	2.63		0.152	0.427		
- Level 3	1.77		1.501	0.399	2.02		1.763	0.493		
Biological factors										
Seed mass	1.68	0.99	-0.257	0.076	1.58	0.94	-0.228	0.100		
Dispersal mode		0.39	-			0.29	-			
- Animal	1.13				1.14					
- Wind	1.73				1.83					
Maximum height	1.25	0.90	0.005	0.003	1.35	0.41	-			
Capable of vegetative reproduction	3.12	0.52	0.604	0.316	3.02	0.59	0.836	0.392		
Flowering start month	2.37	0.23	-		2.51	0.29	-			
Flowering period	2.79	0.86	0.219	0.097	3.04	0.67	0.208	0.114		
Perennial	3.19	0.25	-		2.99	0.26	-			

544 - Not included in the model.

:26

546 Figure legends

Figure 1: (a) Geographic location of the study site, Hokkaido. (b) The distribution map of an example species based on occurrence records in the Hokkaido Blue List alien species database. Black-colored grid cells are those in which the species were observed. (c) Distribution of protected areas in six national, five quasi-national, and 12 prefectural-nature parks. Black solid lines indicate the areas of the parks, and gray-colored grid cells are those including protected areas in each park.

Figure 2: Relationships between (a) the total distribution extent and (b) the distribution

R PRIO

555 extent in and around protected areas and nine studied variables.

Table S1: The proportion of human-disturbed and natural vegetation across the entire area and in protected areas in Hokkaido. Calculation of area and percentage was done by the authors based on the vegetation map of 1/50,000 scale as of 1999 created by the Ministry of the Environment of Japan based on periodic vegetation surveys (the associated GIS data are available at: http://gis.biodic.go.jp/webgis/sc-025.html?kind=vg).

	Ent	ire area	Protected areas		
	Area (ha)	Proportion (%)	Area (ha)	Proportion (%)	
Human-disturbed vegetation					
Urban area	103,035.3	1.2	84.3	0.0	
Agricultural land	1,610,766.0	19.3	410.7	0.1	
Secondary grassland	394,916.9	4.7	4,566.5	1.5	
Secondary forest	465,396.9	5.6	2,380.6	0.8	
Planted forest	1,346,306.0	16.1	1,220.4	0.4	
Subtotal	3,920,421.0	46.9	8,662.5	2.8	
Natural vegetation					
Forest	3,608,403.0	43.2	213,416.3	70.7	
Wet and dry grassland	177,225.0	2.1	4,279.4	14.0	
Subtotal	3,785,628.0	45.3	217,695.7	84.7	
Others (including open water areas)	638,950.5	7.8	37,483.6	12.4	
Total	8,345,000	100	301,962.3	100	
		7	1		

Table S2: Dataset of 63 species used in this study.

				Human association					Biologie	cal traits				Distribut	ion extent
1	Family	Scientific name	Common name	Introduction	Cultivation	Seed mass	Dispersal	Max height	Vegetative	Flowering	Flowering	Flowering	Life span ⁱ	Total	Protected
2				purpose "	I gual b	(mg) ^c	mode "	(cm) °	reproduction '	start month ^s	end month "	(months)			areas
2	Poaceae	Agrostis canina L.	Velvety bentgrass	Р	1	0.06	U	80	Y	5	6	1	Р	47	3
3		Agrostis gigantea Roth	Redtop	Р	3	0.08	U	100	Y	6	8	2	Р	813	93
Λ		Agrostis stolonifera L.	Creeping bentgrass	Р	1	0.07	U	50	Y	7	8	1	Р	92	5
4		Alopecurus pratensis L.	Meadow foxtail	Р	2	0.9	U	120	Y	5	7	2	Р	212	16
5		Anthoxanthum odoratum L.	Sweet vernalgrass	Р	2	0.6	U	80	Y	4	7	3	Р	473	64
6		Bromus inermis Leyss.	Smooth bromegrass	Р	3	2.9	U	70	Y	7	8	1	Р	81	1
0		Bromus secalinus L.	Rye brome	D	2	10.5	U	80	N	5	8	3	A	1284	120
7		Entrigia ranges (L.) Desv. ex B.D. Jackson	Ouackgrass	r O	2	2.1	U	90	I V	4	7	3	P	254	19
0		Festuca arundinacea Schreb	Tall fescue	P	3	2.4	Ŭ	180	Ŷ	5	7	2	P	152	16
8		Festuca pratensis Huds.	Meadow fescue	Р	3	2.2	Ū	100	Y	6	8	2	Р	594	70
9		Holcus lanatus L.	Velvet grass	Р	2	0.3	U	90	Y	6	7	1	Р	53	8
10		Lolium multiflorum Lam.	Italian ryegrass	Р	3	2.9	U	100	Ν	5	7	2	А	173	10
10		Lolium perenne L.	Perennial ryegrasses	Р	3	2.2	U	60	Y	5	7	2	Р	183	27
11		Phleum pratense L.	Timothy	Р	3	0.4	U	100	Y	6	8	2	Р	722	85
		Poa compressa L.	Canadian bluegrass	P	1	0.2	U	60	Y	6	8	2	Р	9	0
12		Poa palustris L.	Fowl bluegrass	P	1	0.2	U	100	Y	5	1	2	P	114	5
13		Poa pratensis L.	Rentucky bluegrass	P	3	0.3	U	80	Y	5	6	1	P	818	101
15	Fabaceae	roa trivians L. Madiagga hupuling I	Black medick	r O	2	1.6	U	60	N	4	7	2	r	141	13
14	Tabaccac	Medicago sativa I	Alfalfa	Р	3	2.0	U	100	N	5	9	4	P	143	11
15		Medicago sanva E. Melilotus officinalis (L.) Pall, subsp. albus (Medik.) H.Ohashi et Tateishi	White sweetclover	P	1	2.5	Ŭ	120	N	6	8	2	A	213	8
15		Melilotus officinalis (L.) Pall. subsp. suaveolens (Ledeb.) H.Ohashi	Yellow Sweetclover	Р	2	2.5	U	150	Ν	4	6	2	А	101	4
16		Trifolium hybridum L.	Alsike clover	Р	3	0.7	U	50	Ν	5	7	2	Р	248	27
17		Trifolium incarnatum L.	Crimson clover	Р	2	3.2	U	60	N	4	7	3	Α	2	0
17		Trifolium pratense L.	Red clover	Р	3	1.3	U	60	N	5	9	4	Р	1198	112
18		Trifolium repens L.	White clover	Р	3	0.7	U	20	Y	4	10	6	Р	1247	134
10	Rosaceae	Fragaria vesca L.	Wild strawberry	0	1	0.3	A	20	Y	6	7	1	Р	23	1
19	Deseries	Potentilla norvegica L.	Norwegian cinquetoil	0	2	0.1	U	60 70	Y	6	9	3	A	294	23
20	Brassicaceae	Camelina alyssum (Mill.) Thell.	Virginia pepperweed	0	$\frac{2}{2}$	0.5	U	70 60	IN N	5	7	2	A	5 47	0
21		Sisymbrium officinale (L.) Scop	Hedgemustard	0	2	0.3	U	80	N	4	6	2	A	22	0
21		Thlaspi arvense L.	Field pennycress	ō	2	1.0	Ū	60	N	3	5	2	A	27	0
22	Polygonaceae	Fallopia convolvulus (L.) Á.Löve	1 5	0	2	5.8	U	100	Ν	6	9	3	А	83	9
~~		Polygonum aviculare L. subsp. depressum (Meisn.) Arcang.		0	2	0.9	U	20	N	6	10	4	Α	426	27
23		Rumex acetosella L. subsp. pyrenaicus (Pourret ex Lapeyr.) Akeroyd		0	2	0.5	U	50	Y	5	7	2	Р	740	83
24		Rumex crispus L.	Curly dock	0	2	1.5	U	150	Y	4	7	3	Р	210	11
~ .	C 1.11	Rumex obtusifolius L.	Bitter dock	0	2	1.5	U	130	Y	5	9	4	Р	1099	110
25	Caryophyllaceae	Silene armeria L.	Sweet William silene	0	1	0.1	U	60	N	5	8	3	A	244	1/
26		Silene nochfiora L. Silene vulgaris (Moanch) Garcka	Maidenstears	0	2	1.0	U	50	N	5	8	2	P	12	2
20		Spergula arvensis L. var. arvensis	Waldenstears	0	1	0.3	U	60	N	6	9	3	A	178	10
27	Amaranthaceae	Amaranthus albus L.	Prostrate pigweed	õ	1	0.3	Ŭ	15	N	8	10	2	A	7	0
28		Amaranthus blitum L.	Purple amaranth	0	1	0.6	U	70	Ν	6	10	4	А	49	5
20		Amaranthus retroflexus L.	Redroot pigweed	0	2	0.4	U	100	N	7	9	2	Α	88	0
29		Chenopodium hybridum L.	Mapleleaf goosefoot	0	1	1.8	U	100	Ν	8	9	1	Α	17	2
30	Phytolaccaceae	Phytolacca acinosa Roxb.		0	1	10.9	U	100	N	6	9	3	Р	23	3
50	Plantaginaceae	Linaria vulgaris Mill.	Butter and eggs	0	1	0.2	W	100	Y	7	9	2	Р	81	4
31		Plantago lanceolata L.	Narrowleaf plantain	0	2	1.4	A	20	Y	4	8	4	Р	707	80
22	Laminanan	Veronica arvensis L.	Corn speedwell	0	1	0.1	U	40	IN N	4	0	2	A	122	26
52	Asteraceae	Achillea millefalium I	Common varrow	0	1	0.2	U	100	V	6	9	3	P	471	41
33	Asteraceae	Cichorium intybus L.	Chicory	ŏ	1	1.2	Ŭ	120	Ň	6	9	3	P	181	17
24		Erigeron annuus (L.) Pers.	Eastern daisy fleabane	0	1	0.03	W	150	Ν	5	10	5	А	635	59
34		Erigeron canadensis L.	Canadian horseweed	0	1	0.05	W	200	Ν	7	10	3	А	621	43
35		Gnaphalium uliginosum L.	Marsh cudweed	0	1	0.01	W	35	N	8	10	2	Α	105	5
20		Leucanthemum vulgare Lam.	Oxeye daisy	0	2	0.4	U	50	Y	6	9	3	Р	654	77
30		Matricaria matricarioides (Less.) Ced.Porter ex Britton		0	1	0.08	U	30	N	5	7	2	A	318	35
37		Rudbeckia laciniata L.	Cutleat coneflower	0	1	2.5	U	300	Y	7	10	3	Р	682	31
20		Senecio vulgaris L.	Old-man-in-the-Spring	g U	2	0.2	W XX7	30	N	3	12	9	A	340	25
38		Tararacum lagvigatum (Willd) DC	Rock dandelion	0	2	0.5	W	25	IN Y	4	10	8	P	287	7
39		Taraxacum officinale Weber ex F.H.Wigg.	Dandelion	ŏ	2	0.6	w	45	Ŷ	3	11	8	P	1185	131
				-	-								-		

^a Introduction purpose P: pastoral use, O: others. References: Morita (1981), Nishimura (1988), Igarashi (2001).

^b Cultivation frequency Level 1: not sown, Level 2: accidentally sown as a contaminant, Level 3: intentionally sown for commercial cultivation. References: The list of recommended pasture species in Hokkaido from 1914 to 2009, the seed demand statistics of pasture plants in Hokkaido summarized by the Ministry of Agriculture, Forestry and Fisheries of Japan from 1981 to 2000, Japan Forage Crop Seeds Association (1972), Murayama et al. (1989).

^c Seed mass References: Kew Seed Information Database: http://plants.usda.gov/ (Accessed 1 Feb 2017), Shimizu et al. (2001), Asai (2014).

^d Dispersal mode U: unspecialized, A: animal (attachment or ingestion), W: wind. References: Nakayama et al. (2011), Asai (2014), Tamme et al. (2014).

42 e Max height References: Osada (1976, 2002), Satake et al. (1982), Shimizu (2003).

43

¹Vegetative reproduction Y: capable, N: not capable or unknown. References: Satake et al. (1982), Osada (2002), Asai (2014), Online Atlas of the British and Irish Flora: https://www.brc.ac.uk/Plantatlas/ (Accessed 1 Feb 2017).

¹⁶ Flowering start month References: Satake et al. (1982), Osada (2002), Shimizu (2003), Asai (2014). ^h Flowering end month References: Satake et al. (1982), Osada (2002), Shimizu (2003), Asai (2014). Note that this parameter was not incorporated in the analysis.

ⁱ Life span A: annual or biennial, P: perennial. References: Osada (1976, 2002), Satake et al. (1982), Shimizu (2003).

40