

Attenuation of inorganic arsenic and cadmium in rice grains using by-product iron materials from the casting industry combined with different water management practices

メタデータ	言語: eng					
	出版者:					
	公開日: 2020-06-02					
	キーワード (Ja):					
	キーワード (En):					
	作成者: 須田, 碧海, 牧野, 知之					
	メールアドレス:					
	所属:					
URL	https://repository.naro.go.jp/records/3617					
	This work is licensed under a Creative Commor					

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Supplemental Materials

Original article / Full-length paper

Attenuation of inorganic arsenic and cadmium in rice grains using byproduct iron materials from the casting industry combined with different water management practices

Aomi Suda* and Tomoyuki Makino

Institute for Agro-Environmental Sciences, NARO, 3-1-3, Kannondai, Tsukuba, Ibaraki 305-8604, Japan

* Correspondence:

A. Suda, National Institute for Agro-Environmental Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki 305-8604, Japan
E-mail: suda_aomi@affrc.go.jp
Tel: +81-29-838-8314
Fax: +81-29-838-8314

V: Application rate	Y: Uptake in shoot						
(t ha ⁻¹)	$P (mg pot^{-1})$		Si (g pot ⁻¹)		$Mn (mg pot^{-1})$		
	CF	WS	CF	WS	CF	WS	
SSS							
0	86.9±6.6	79.8±3.2	1.64 ± 0.13	1.70 ± 0.06	18.1±1.3	71.8±3.7	
10	82.2±3.0	79.8±1.7	1.61 ± 0.08	1.73 ± 0.04	16.1±1.4	69.4±2.3	
30	87.7±3.2	75.8±3.9	1.62 ± 0.04	1.81 ± 0.07	15.3±1.1	65.7±4.1	
Regression							
Slope	0.0632	-0.1446	-0.0003	0.0038	-0.0861	-0.2012	
Intercept	84.7	80.4	1.63	1.70	17.6	71.7	
R^2	0.031	0.300	0.003	0.481	0.462	0.407	
Significance	ns	ns	ns	<i>p</i> < 0.05	<i>p</i> < 0.05	<i>p</i> < 0.05	
RIM							
0	86.9±6.6	79.8±3.2	1.64 ± 0.13	1.70 ± 0.06	18.1 ± 1.3	71.8±3.7	
10	89.3±2.6	78.5±1.7	1.55 ± 0.02	1.71 ± 0.04	17.7 ± 0.5	71.8±1.2	
30	88.0 ± 0.9	77.5±2.6	1.51 ± 0.05	$1.79{\pm}0.03$	17.4 ± 0.5	70.1±2.6	
Regression							
Slope	0.0250	-0.0740	-0.0039	0.0032	-0.0201	-0.0631	
Intercept	87.7	79.6	1.62	1.69	18.0	72.1	
R^2	0.008	0.143	0.328	0.480	0.111	0.100	
Significance	ns	ns	ns	p < 0.05	ns	ns	

Table S1 Simple linear regression analyses for uptake of phosphorus (P), silicon (Si), and manganese (Mn) by the shoot (Y) in relation to Fe material application rate (X).

CF; Continuously flooded, WS; water-saving, SSS; spent steel shot, RIM; residual iron material, ns; not significant (p > 0.05)

Uptake of each element by the shoot was calculated using the concentrations in straw, husk, and grain and their weight (oven-dried basis) per pot. However, shoot in Si was calculated from straw and husk.

X: Application rate (t ha ⁻¹)	<i>Y</i> : Uptake in shoot						
	As $(\mu g \text{ pot}^{-1})$ Cd $(\mu g \text{ pot}^{-1})$						
	CF	WS	CF	WS			
SSS							
0	174±14	40.9±7.7	0.855-0.980	14.0 ± 0.9			
10	54.8±8.7	32.3±8.2	0.792-0.870	12.9±0.9			
30	33.4±6.0	17.7±2.2	0.745-0.832	10.9 ± 1.0			
Slope	-4.16	-0.765	-	-0.102			
Intercept	143	40.5	-	13.9			
R^2	0.695	0.736	-	0.709			
Significance	<i>p</i> < 0.01	p < 0.001	-	p < 0.001			
RIM							
0	174±14	40.9±7.7	0.855-0.980	14.0 ± 0.9			
10	44.8±2.2	23.2±2.5	0.676-0.762	11.7 ± 0.8			
30	19.5±0.4	14.0 ± 0.8	0.607-0.677	9.05±0.93			
Slope	-4.58	-0.833	-	-0.160			
Intercept	140	37.1	-	13.7			
R^2	0.710	0.768	-	0.862			
Significance	p < 0.01	p < 0.001	-	p < 0.001			

Table S2 Simple linear regression analyses for arsenic (As) and Cadmium (Cd) uptake by the shoot (Y) in relation to the Fe material application rate (X).

CF; continuously flooded, WS; water-saving, SSS; spent steel shot, RIM; residual iron material Uptake of each element by the shoot was calculated using the concentration in straw, husk, and grain and their weight (oven-dried basis) per pot. For Cd under CF cultivation, the values contain uncertainty derived from Cd in grains (<LOD or <LOQ).

Grain yield or shoot biomass under CF cultivation (g pot⁻¹)

Fig. S1 Relationship between grain yield or shoot biomass obtained under continuously flooded (CF) cultivation and that under water-saving (WS) cultivation. Bars represent standard deviations. The broken line indicates y = x.

Fig. S2 Time course of concentrations of dissolved iron [Fe; (a), (b)], silicon [Si; (c), (d)], and manganese [Mn; (e), (f)] in soil solution during the cultivation period. (a), (c), and (e) are under continuously flooded cultivation and (b), (d), and (f) are under water-saving cultivation. The plot and error bar represent the average and standard deviation, respectively. The double-headed arrow indicates the intermittent irrigation period.