

Heterologous production of a new lasso peptide brevunsin in Sphingomonas subterranea

メタデータ	言語: eng
	出版者:
	公開日: 2020-06-02
	キーワード (Ja):
	キーワード (En):
	作成者: 逸見, 光, 中川, 博之
	メールアドレス:
	所属:
URL	https://repository.naro.go.jp/records/3438
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

2	subterranea
3	Running headline: Heterologous production of brevunsin
4	Authors: Shinya Kodani, ^{1,2,3} Hikaru Hemmi, ⁴ Yuto Miyake, ² Issara Kaweewan, ³ and
5	Hiroyuki Nakagawa ^{4,5}
6	Affiliations: ¹ College of Agriculture, Academic Institute, Shizuoka University,
7	Shizuoka 422-8529, Japan; ² Graduate School of Integrated Science and Technology,
8	Shizuoka University, Shizuoka 422-8529, Japan; ³ Graduate School of Science and
9	Technology, Shizuoka University, Shizuoka 422-8529, Japan; ⁴ Food Research Institute,
10	National Agriculture and Food Research Organization (NARO), Ibaraki 305-8642,
11	Japan; ⁵ Advanced Analysis Center, National Agriculture and Food Research
12	Organization (NARO), Ibaraki 305-8642, Japan
13	
14	
15	*To whom correspondence should be addressed: Shinya Kodani, College of Agriculture,
16	Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529

Heterologous production of a new lasso peptide brevunsin in Sphingomonas

17 Japan, Tel/Fax; +81(54)238-5008, E-mail; kodani.shinya@shizuoka.ac.jp

1

18

19 Abstract

20	A shuttle vector pHSG396Sp was constructed to perform gene expression using
21	Sphingomonas subterranea as a host. A new lasso peptide biosynthetic gene cluster,
22	derived from Brevundimonas diminuta, was amplified by PCR and integrated to afford a
23	expression vector pHSG396Sp-12697L. The new lasso peptide brevunsin was
24	successfully produced by S. subterranea, harboring the expression vector, with a high
25	production yield (10.2 mg from 1 L culture). The chemical structure of brevunsin was
26	established by NMR and MS/MS experiments. Based on the information obtained from
27	the NOE experiment, the three-dimensional structure of brevunsin was determined,
28	which indicated that brevunsin possessed a typical lasso structure. This expression
29	vector system provides a new heterologous production method for unexplored lasso
30	peptides that are encoded by bacterial genomes.
31	

33 Introduction

A lasso peptide is a unique peptide, normally 15-25 amino acids in length, which 34possesses the common motif of a knot structure in the molecule. Based on its biosynthetic 35system, it is classified with the ribosomally biosynthesized and post-translationally 36 modified peptides (RiPPs) [3, 26, 28, 36]. In the biosynthesis of the lasso peptide, an 3738 isopeptide bond is formed between the amino group of the N-terminal amino acid and the 39 β - or γ -carboxyl group of Asp or Glu at the 7th - 9th position from the N-terminus, which results in a macrolactam ring [27, 31, 33]. The tail of the C-terminal linear peptide 40 normally passes through the ring, which is defined as the "lasso" structure. The first lasso 41 peptide, named microcin J25, was isolated from a culture of Escherichia coli [35]. The 42biosynthetic gene cluster for microcin J25 (about 4.8 kbp) was reported to include four 43 genes: a precursor peptide coding gene (gene A: McjA), two maturation enzyme coding 44genes (gene B: McjB and gene C: McjC), and an ATP-binding cassette transporter gene 45(gene D: McjD) [37]. Normally, the lasso peptide biosynthetic genes in proteobacteria 46 have the same set of the genes, although the transporter gene is optional. 47Recently the genome mining method has become a powerful tool to find new lasso 48 peptides, due to the accumulation of bacterial genome data [29, 20, 13, 32]. The 49

50 prediction system for RiPPs, named RODEO (Rapid ORF Description and Evaluation

51	Online), was developed, resulting in the discovery of six new lasso peptides [38]. The
52	genome-mining approach and heterologous production using Escherichia coli as host
53	cells have been performed to produce new lasso peptides [15, 14, 13, 12, 11, 10, 41]. To
54	produce useful functional molecule by modifying natural lasso peptide, several attempts
55	were reported. Recently, RGD peptide motif was integrated into the lasso peptide
56	microcin J25 to yield recombinant microcin J25 which had a highly potent and selective
57	$\alpha\nu\beta3$ integrin inhibitory activity [10]. The lasso peptide benenodin-1 was reported to
58	exhibit conformational switching between two distinct threaded conformers upon
59	actuation by heat, like a rotaxane switch [39]. In any case, the heterologous E. coli
60	expression system is problematic in that the amount of the lasso peptide produced is not
61	very high without engineering the DNA sequence of the gene cluster [40]. To exploit
62	lasso peptide gene clusters, improved method to perform heterologous production
63	system is needed to obtain larger amount of new lasso peptide. We recently found
64	production of a new lasso peptide, named subterisin, in a culture of Sphingomonas
65	subterranea with high yield (15.0 mg from 1 L culture) [24]. On the other hand,
66	Hayashi and Kurusu reported the construction of stable shuttle vectors between E. coli
67	and Sphingomonas species [8, 9]. The GC content of genome of S. subterranea is high
68	(approximately 63 %) compared to that of <i>Escherichia coli</i> (approximately 50 %), so

69	there is an advantage to use S. subterranea as a host for expression of gene with high
70	GC content. We proposed that expression of the lasso peptide biosynthetic genes with
71	high GC content in S. subterranea could result in a large amount of production of the
72	exogenous lasso peptide. Based on this speculation, we accomplished the construction
73	of a shuttle vector between E. coli - Sphingomonas sp. and heterologous production of a
74	new lasso peptide named brevunsin in S. subterranea. Here, we describe the
75	heterologous production and structure determination of the new lasso peptide brevunsin.
76	Materials and methods
77	Bacterial strains.
78	The microorganisms (Bacterial strains including Sphingomonas subterrenea NBRC
79	16086 ^T , Sphingobium yanoikuyae NBRC 15102 ^T , Brevundimonas diminuta NBRC
80	12697 ^T , Escherichia coli NBRC 102203 ^T , Pseudomonas aeruginosa NBRC 12689 ^T ,
81	Bacillus subtilis NBRC 13719 ^T , Staphylococcus aureus NBRC 100910 ^T , Micrococcus
82	<i>luteus</i> NBRC 3333 ^T ; Yeast strains including <i>Saccharomyces cerevisiae</i> NBRC 2376,
83	Schizosaccharomyces pombe NBRC 0340; fungi strains including Aspergillus niger
84	NBRC 33023 ^T , Aspergillus oryzae NBRC 4290 were obtained from the NBRC culture
85	collection (NITE Biological Resource Center, Japan).
86	Construction of the shuttle vector pHSG396Sp

 $\mathbf{5}$

87	For the template for PCR amplification, the plasmid pYAN1 was purified from the cells
88	of Sphingobium yanoikuyae using an isolation kit (FastGene Plasmid Mini Kit,
89	NIPPON Genetics Co. Ltd, Tokyo, Japan). To construct the shuttle vector pHSG396Sp,
90	the sequence (1228 bp, including repA: WP_004213409.1) was amplified by PCR with
91	the template (pYAN1) and the primer pair YAN1-F1 and YAN1-R2 (Table S1), using a
92	high-fidelity Phusion polymerase (NEB, Frankfurt/Main, Germany), following the
93	manufacturer's instructions. The DNA fragment insert, including repA, and the
94	pHSG396 vector (Takara Bio Inc., Shiga, Japan) were double digested with HindIII
95	(NEB) and SalI (NEB), according to the manufacturer's instructions. The DNA
96	products were ligated using T4 DNA ligation mix (Takara Bio Inc.) to afford the shuttle
97	vector pHSG396Sp. E. coli DH5 α cells were transformed with 5 μ L of the ligation
98	mixture by chemical competence transformation, and the cells were plated on LB agar
99	medium (5 g tryptone, 2.5 g yeast extract, 5 g NaCl, and 15 g agar in 1 L distilled water)
100	containing chloramphenicol (final concentration: 20 μ g/mL). The plasmid pHSG396Sp
101	was purified using an isolation kit (FastGene Plasmid Mini Kit).
102	Construction of the expression vector pHSG396Sp-12697L

103 For the template for PCR amplification, genomic DNA was extracted from the cells of

104 Brevundimonas diminuta using DNeasy Blood & Tissue (Qiagen, Venlo, Netherlands).

105	The DNA fragment, including the lasso peptide brevunsin biosynthetic gene cluster
106	(2754 bp, <i>breA</i> , <i>breB</i> , and <i>breC</i>), was amplified by PCR with the template and the
107	primer pair of 12697L-F and 12697L-R (Table S1), using a high-fidelity Phusion
108	polymerase (NEB), following the manufacturer's instructions. The DNA fragment
109	insert, including the brevunsin biosynthetic gene cluster, and the shuttle vector
110	pHSG396Sp were digested with XbaI (NEB) and KpnI (NEB), according to the
111	manufacturer's instructions. The DNA products were ligated using T4 DNA ligation
112	mix (Takara Bio Inc.) to afford the vector pHSG396Sp-12697L. <i>E. coli</i> DH5 α cells
113	were transformed with 5 μ L of the ligation mixture by chemical competence
114	transformation, and the cells were plated on LB agar plates containing chloramphenicol
115	(final concentration: 20 μ g/mL). The plasmid pHSG396Sp-12697L was purified using
116	an isolation kit (FastGene Plasmid Mini Kit). The DNA sequences of the plasmids
117	(pHSG396Sp and pHSG396Sp-12697L) were determined by direct DNA sequencing
118	using Applied Biosystems 3730xl (Thermo Fisher Scientific, Inc., Massachusetts,
119	USA), as shown in Fig. S1 and S2.
120	Transformation of the expression vector to Sphingobium subterranea
121	The plasmid pHSG396Sp or pHSG396Sp-12697L was transformed into Sphingomonas

122 subterranea using electroporation. The bacterium S. subterranea was cultured in 10 mL

 $\mathbf{7}$

123	of NBRC medium (number 802 liquid medium;10 g peptone, 2 g yeast extract, and 1 g
124	MgSO ₄ ·7H ₂ O in 1 L distilled water, pH 7.0) at 30 °C for 24 h with shaking at 50 rpm.
125	The cells were cooled on ice for 30 min, followed by centrifugation (4000 rpm, 4 °C, 10
126	min). The harvested cells were suspended in 10 ml of a cold 10% glycerol solution.
127	After centrifugation (4000 rpm, 4 °C, 10 min), the cells were harvested and resuspended
128	in 10 ml of a cold 10% glycerol solution. After centrifugation (4000 rpm, 4 °C, 10 min),
129	the harvested cells were resuspended in 0.1 mL of a cold 10% glycerol solution for
130	electroporation. The electroporation experiment for a 0.1 mL suspension of cells was
131	performed with the program "Ec3" (Voltage: 3.0 kV, 1 pulse) using a MicroPulser (Bio-
132	Rad Laboratories, California, USA). After electroporation, 0.5 mL of Super Optimal
133	Broth with Catabolic repressor (SOC) medium was immediately added to the cell
134	suspension. For the recovery of damage, the cells were incubated at 30 °C for 2 h. Then,
135	the S. subterranea cells were spread onto NBRC medium (number 802 agar medium; 10
136	g peptone, 2 g yeast extract, 1 g MgSO4·7H2O, and 15 g agar in 1 L distilled water, pH
137	7.0) containing chloramphenicol (final concentration: 10 μ g/mL). After incubation at
138	30 °C for 6 days, colonies were picked and checked by the colony PCR method to
139	obtain S. subterranea harboring pHSG396Sp or pHSG396Sp-12697L.

140 Isolation of brevunsin

141	Sphingomonas subterranea harboring pHSG396Sp-12697L was cultured using 1 L of
142	modified basal medium [16] containing chloramphenicol (20 μ g/mL, final concentration)
143	with shaking of 120 rpm at 30 °C for 9 days. The modified basal medium was prepared
144	by adding the inorganic compounds (K ₂ SO ₄ , 2 g; K ₂ HPO ₄ , 3 g; NaCl, 1 g; NH ₄ Cl, 5 g;
145	MgSO ₄ •7H ₂ O, 80 mg; CuCl ₂ , 5 mg; MnSO ₄ •H ₂ O, 2.5 mg; FeCl ₃ •6H ₂ O, 5 mg;
146	CaCl ₂ •2H ₂ O, 5 mg) in 1L of distilled water with adjusting pH 7.0. After autoclaving,
147	the medium was supplemented with separately sterilized glucose and yeast extract at final
148	concentrations of 0.25%, 0.005%, respectively. The culture including bacterial cells
149	was evaporated using rotary evaporator to aqueous residue (about 20 mL). The aqueous
150	residue was extracted with MeOH (300 mL). After filtration with paper filter (Wattman
151	No. 1 filter, GE Healthcare Life Sciences, Illinois, USA), the MeOH extract was
152	concentrated to aqueous residue using rotary evaporator. The aqueous residue was
153	subjected to open column chromatography using hydrophobic resin CHP-20P (Mitsubishi
154	Chemical Co., Tokyo, Japan), eluted with 10% MeOH, 60% MeOH, and 100% MeOH.
155	The 60% MeOH fraction was subjected to HPLC analysis using ODS column (4.6 \times 250
156	mm, 5 µm, Wakopak Handy-ODS, Wako Pure Chemical Industries Ltd., Osaka, Japan)
157	with gradient elution from 20% to 50% MeCN containing 0.05% trifluoroacetic acid for
158	20 min with UV detector set at 220 nm to detect brevunsin (retention time, 12.1 min, Fig.

S3) along with subterisin (retention time, 13.4 min, Fig. S3). For isolation of brevunsin,
the 60% MeOH fraction was repeatedly subjected to HPLC purification using ODS
column (4.6 × 250 mm, 5 μm, Wakopak Handy-ODS, Wako Pure Chemical Industries,
Ltd., Osaka, Japan) with isocratic elution at 22% MeCN containing 0.05% trifluoroacetic
acid with UV detector set at 220 nm to isolate 10.2 mg of brevunsin (retention time, 26.8
min, Fig. S4). The yield of brevunsin was weighed by precision balance (AW320,
SHIMADZU Co., Tokyo, Japan).

166 Treatment of cyanogen bromide

167 Brevunsin (0.5 mg) was dissolved in 1 ml of 70% HCOOH and treated for 4h at room

temparature with 0.1M cyanogen bromide. After cleavage, the reaction mixture was

- 169 centrifuged at 14500 rpm and the supernatant was concentrated by rotary evaporator and
- 170 completely lyophilized by freeze dryer. The residue was re-dissolved in 0.5 mL of
- 171 methanol and subjected to reversed-phase HPLC purification using ODS column ($4.6 \times$
- 172 250 mm, 5 µm, Wakopak Handy-ODS, Wako Pure Chemical Industries Ltd.) with
- 173 gradient elution from 20% to 70% MeCN containing 0.05% trifluoroacetic acid for 20
- 174 min with UV detector set at 220 nm to yield cleaved brevunsin.

175 Mass spectrometry experiments

176	Brevunsin or cleaved brevunsin was dissolved in 30% MeCN. The accurate mass
177	measurement was conducted using a Fourier-transform ion cyclotron resonance (FT-
178	ICR) mass spectrometer (ApexII 70e, Bruker Daltonics). Brevunsin sample was
179	appropriately diluted with 50% MeOH containing 0.1% formic acid was, and supplied
180	to FT-ICR mass spectrometer by direct infusion with electrospray ionization (ESI) in the
181	positive polarity. MALDI-TOF MS and MS/MS analysis was conducted using a
182	MALDI-TOF/TOF mass spectrometer (4800 Plus TOF/TOF analyzer, Sciex, CA,
183	USA). Brevunsin sample was mixed with equal volume of α -Cyano-4-
184	hydroxycinnamic acid (4-CHCA) (Shimadzu GLC Ltd., Tokyo) matrix solution
185	(prepared as 10 mg/mL in 50%AcCN containing 0.1% tri-fluoro acetic acid) in 1:1 ratio,
186	and aliquot of the mixture (0.5 μ L) was spotted onto a standard stainless plate. After
187	dried up, MS and MS/MS spectra were measured in the positive-ion mode with an
188	acceleration voltage of 20 kV. The mass spectrometer was tuned and calibrated using
189	calibration standards of YOKUDELNA (JEOL, Tokyo, Japan) and the peptide mixture
190	(Peptide Calibration Standard II, Bruker Daltonics), respectively, prior to the
191	measurements.

192 NMR experiments

193	A NMR sample was prepared by dissolving the purified peptide in 500 μ l of dimethyl
194	sulfoxide- d_6 (DMSO- d_6). All NMR spectra were obtained on Bruker Avance 600 and
195	Avance III HD 800 spectrometers with quadrature detection in the phase-sensitive mode
196	by States-TPPI (time proportional phase incrementation) and in the echo-antiecho
197	mode. One-dimensional (1D) ¹ H, ¹³ C, DEPT-135 spectra were recorded at 25 °C with
198	15 ppm for proton and 239 ppm or 222 ppm for carbon. The following spectra were
199	recorded at 20, 25, or 30 °C, respectively, with 15 ppm spectral widths in <i>t1</i> and <i>t2</i>
200	dimensions: two-dimensional (2D) double quantum filtered correlated spectroscopy
201	(DQF-COSY), recorded with 512 and 1024 complex points in <i>t1</i> and <i>t2</i> dimensions; 2D
202	homonuclear total correlated spectroscopy (TOCSY) with DIPSI2 mixing sequence,
203	recorded with mixing time of 80 ms, 512 and 1024 complex points in $t1$ and $t2$
204	dimensions; 2D nuclear Overhauser effect spectroscopy (NOESY), recorded with
205	mixing times of 200 and 400 ms, 512 and 1024 complex points in $t1$ and $t2$ dimensions.
206	2D ¹ H- ¹³ C heteronuclear single quantum correlation (HSQC) and heteronuclear multiple
207	bond connectivity (HMBC) spectra were acquired at 25 °C in the echo-antiecho mode.
208	The ¹ H- ¹³ C HSQC and HMBC spectra were recorded with 1024 \times 512 complex points
209	for 15 ppm in the ¹ H dimension and 160 ppm or 222 ppm in the ¹³ C dimension,
210	respectively, at a natural isotope abundance. 2D ¹ H- ¹⁵ N HSQC spectrum was recorded

211	with 1024×128 complex points for 15 ppm in the ¹ H dimension and 40 ppm in the ¹⁵ N
212	dimension at a natural isotope abundance. All NMR spectra were processed using
213	TOPSPIN 3.5 (Bruker). Peak-picking and assignment were performed with Sparky
214	program (UCSF, http://www.cgl.ucsf.edu/Research/Sparky.html). Before Fourier
215	transformation, the shifted sinebell window function was applied to $t1$ and $t2$
216	dimensions. All ¹ H and ¹³ C dimensions were referenced to DMSO- d_6 at 25 °C.

217 Structure calculations

Distance restraints were constructed from intensities of NOE cross peaks in 2D NOESY 218 spectra with mixing times of 200 ms, which were classified into four distance categories 219220(2.9, 3.5, 5.0, and 6.0 Å). Pseudo-atom corrections were made for non-stereospecifically 221assigned methylene and methyl resonance [39]. An additional 0.5 Å were added to the 222upper bounds for methyl protons [4]. Backbone Φ dihedral angle restraints were evaluated from ${}^{3}J_{HN\alpha}$ values obtained from the high digital resolution 2D DQF-COSY 223spectrum and intraresidue and sequential NOEs. Backbone ϕ -angles were restrained to – 224 $120^{\circ} \pm 40^{\circ}$ for ${}^{3}J_{HN-H\alpha} = 8.5 - 9$ Hz and $-120^{\circ} \pm 30^{\circ}$ for ${}^{3}J_{HN-H\alpha} > 9$ Hz. The additional 225 Φ dihedral angle restraint of $100^\circ \pm 80^\circ$ was applied to residues for which the 226intraresidue HN-Hα NOE was clearly weaker than the NOE between HN and the Hα of 227the preceding residue [5]. The solution structure of brevunsin was calculated by 228

229	simulated annealing protocol using distant and dihedral angle restraints with the
230	program CNS version 1.1 [2]. The Asp1-Glu9 isopeptide linkage was generated using a
231	manual patch of the "protein-allhdg.top" CNS file modified from the manual patch of
232	the "protein1.0.top" XPLOR-NIH file [34]. Three hundred structures were calculated, of
233	which the 15 structures of lowest energy were selected for structural analysis. The final
234	15 lowest-energy ensemble structures were analyzed by MOLMOL [23] and
235	PROCHECK-NMR [25], and graphics were created by MOLMOL. The atomic
236	coordinate data was deposited in the Protein Data Bank (PDB ID: 5ZCN).

237 Thermostability test of brevunsin

- 238 Concentration of brevunsin was adjusted to 0.5 mg/mL in DMSO. Aliquot sample (100
- 239 µl each) was heated at 50 °C, 65°C, 80 °C, and 95 °C for 1 hr, followed by immediate
- 240 cooling to 4 °C. Each sample (50 μl) was subjected to HPLC analysis using ODS column
- 241 $(4.6 \times 250 \text{ mm}, 5 \mu\text{m}, \text{Wakopak Handy-ODS}, \text{Wako Pure Chemical Industries Ltd.}, \text{Osaka},$
- Japan) with gradient elution from 20% to 60% MeCN containing 0.05% trifluoroacetic
- acid for 20 min with UV detector set at 220 nm.

244 Modified Marfey's method

Brevunsin (1.0 mg) was subjected to acid hydrolysis with 6N HCl containing 3% phenol

246	and 1% mercaptoethanol at 110 °C for 16 h for detection of amino acids. The hydrolysates
247	were completely evaporated using rotary evaporator, followed by adding 200 μ L of water.
248	10 μ L of Na-(5-fluoro-2,4-dinitrophenyl)-L-leucinamide (L-FDLA, Tokyo Chemical
249	Industry Co., Ltd, Tokyo, Japan) in acetone (10 $\mu g/\mu L)$ and 100 μL of 1M NaHCO3
250	solution were added to the hydrolysate and the mixture was incubated at 80 °C for 3 min.
251	The reaction mixture was cooled down to room temperature before being neutralized with
252	50 μ L of 2N HCl and diluted with 1 mL of 50% MeCN. For standard amino acid, each
253	amino acid was derivatized with L-FDLA and D-FDLA in the same method.
254	Approximately 30 μ L of each FDLA derivatives was subjected to HPLC analysis with
255	C18 column (4.6 \times 250 mm, Wakopak Handy ODS, WAKO Pure Chemical Industries
256	Ltd.). The DAD detector (MD-2018, JASCO, Tokyo, Japan) was used for detection of the
257	amino acid derivatives accumulating the data of the absorbance from 220nm to 420 nm.
258	The HPLC analysis was performed at a flow rate of 1 mL/min using solvent A (distilled
259	water containing 0.05% TFA) and solvent B (MeCN containing 0.05% TFA) with a linear
260	gradient mode from 0 min to 70 min, increasing percentage of solvent B from 25% to
261	60%. The retention times (min) of L- or D-FDLA derivatized amino acids in this HPLC
262	condition were following; L-Arg-D-FDLA (17.23 min), L-Arg-L-FDLA (22.24 min), L-
263	Asp-L-FDLA (23.43 min), L-Tyr-D-FDLA (24.09 min), L-Ser-L-FDLA (24.16 min), L-

264	Ser-D-FDLA (25.19min), L-Asp-D-FDLA (26.86 min), L-Glu-L-FDLA (28.12 min), L-
265	Glu-D-FDLA (30.43 min), L-Pro-L-FDLA (30.8 min), L-Ala-L-FDLA (32.69 min), L-
266	Tyr-L-FDLA (34.70 min), L-Pro-D-FDLA (35.89 min), L-Met-L-FDLA (38.53 min), L-
267	Ala-D-FDLA (39.77 min), L-allo-Ile-L-FDLA (43.43 min), L-Ile-L-FDLA (43.72 min),
268	L-Leu-L-FDLA (44.74 min), L-Phe-L-FDLA (46.22 min), L-allo-Ile-D-FDLA (49.27
269	min), L-Met-D-FDLA (49.33 min), L-Ile-D-FDLA (49.35 min), L-Val-D-FDLA (51.77
270	min), L-Phe-D-FDLA (54.16 min), L-Leu-D-FDLA (59.17 min), and L-Val-L-
271	FDLA(59.67 min).

272 Antimicrobial assays

The testing microorganisms were following: E. coli, P. aeruginosa, B. subtilis, S. aureus, 273M. luteus, S. cerevisiae, S. pombe, A.niger, and A. oryzae. The testing microorganisms 274were cultivated using nutrient agar medium (peptone 5 g, beef extract 3 g, NaCl 5g, agar 27527615 g in 1 L of distilled water, pH 7.3) for E. coli, P. aeruginosa, B. subtilis, S. aureus, M. luteus, S. cerevisiae or ISP2 agar medium (malt extract 10 g, yeast extract 4 g, glucose 4 277g, agar 15 g in 1 L of distilled water, pH 7.3) for S. cerevisiae, S. pombe, A.niger, A. 278oryzae with incubation at 30°C. The peptide was dissolved in DMSO at the concentration 279of 10 mg/mL. After the testing microorganisms were inoculated on the surface of agar 280281medium, the paper disk with 50 μ g of the peptide (5 μ L) or negative control (DMSO, 5 µL) was placed onto the agar plate. After incubation for 2 days at 30 °C, the formation
of inhibition zone around the well was used for evaluation of antimicrobial activity.

Results and Discussion

285	Previously, Hegemann et al. indicated the distribution of the lasso peptide biosynthetic
286	gene cluster in proteobacteria [14, 30]. In the reports [14, 30], an interesting lasso
287	peptide biosynthetic gene cluster was found among the genome data for Brevundimonas
288	diminuta (Fig. 1). The biosynthetic gene cluster had a typical set of lasso peptide
289	biosynthetic genes, including the genes breA (accession number: EGF94505.1), breB
290	(EGF94506.1), and <i>breC</i> (EGF94507.1). The leader peptide sequence in the lasso
291	peptide precursor normally has the conserved sequence -Thr-X- before the core peptide
292	sequence, and the first amino acid of the core peptide is often Gly, Ser, or Cys in most
293	cases. However, the core peptide sequence of brevunsin started with Asp (Fig. 1), and
294	this was unusual for a lasso peptide core peptide. It was of great interest to clarify
295	whether this biosynthetic gene cluster functioned to afford the expected lasso peptide
296	brevunsin. Firstly we performed detection of lasso peptide production in extract of
297	culture of <i>B. diminuta</i> by HPLC and ESI-MS, following the previous report [24]. As a
298	result, production of the expected lasso peptide brevunsin was not observed (Data not
299	shown). Therefore, we planned to perform heterologous production of the lasso peptide

- named brevunsin (Fig. 1) using the natural lasso peptide-producing strain
- 301 *Sphingomonas subterrenea* as a host [24].
- 302 The shuttle vector pHSG396Sp was constructed by integrating *par* region and *repA*
- 303 gene (shown in red, Fig. 2), following a previous report [8]. The promoter sequence of
- 304 <u>TTGACA</u> 17bp <u>TANNNGC</u> was reported as a high expression, efficiency promoter
- sequence for *Sphingomonas* species [18, 19]. Thus, we integrated that promoter
- 306 sequence (<u>TTGACA</u> 17bp <u>TAGAGGC</u>) upstream of the brevunsin biosynthetic gene
- 307 cluster (*breA*, *breB*, and *breC*, shown in green, Fig 2), constructing the expression
- 308 vector pHSG396Sp-12697L (Fig. 2 and Fig. S2). The expression vector pHSG396Sp-
- 309 12697L was transformed into *S. subterrenea* using electroporation.
- The bacterium *S. subterrenea*, harboring pHSG396Sp-12697L, was cultured using
- 311 modified basal medium (1 L) containing chloramphenicol. A new lasso peptide
- brevunsin (10.2 mg) was isolated from the extract of the culture, along with the
- 313 previously reported lasso peptide subterisin [24]. As a control, *S. subterrenea* harboring
- 314 pHSG396Sp was also cultured and tested for production of brevunsin with same
- 315 condition. As a result, S. subterrenea harboring pHSG396Sp was confirmed to
- 316 produce subterisin but not brevunsin (Fig. S3). Brevunsin showed low solubility in
- distilled water (less than 10 μ g/mL) and high solubility (more than 1 mg/mL) in DMSO

318	and MeOH. To date, this yield (10.2 mg/L) is the highest yield for the heterologous
319	production of a lasso peptide, among previous reports [10-15, 40, 41]. The molecular
320	formula of brevunsin was confirmed to be $C_{99}H_{148}N_{24}O_{33}S$ by accurate ESI-MS
321	analysis, because the ion corresponding to $[M+2H]^{2+}$ was observed at m/z 1117.5244
322	(calculated m/z value: 1117.5253). The molecular formula was identical to what we
323	expected from the precursor gene sequence (Fig. 1). To obtain the chemical structure,
324	NMR experiments, including ¹ H, ¹³ C, DEPT-135, DQF-COSY, TOCSY, NOESY,
325	HMBC, and HSQC, were performed on brevunsin in 0.5 mL of DMSO- d_6 . Assignment
326	of the constituent amino acids was accomplished using spin system identification (Table
327	S2), although several protons and carbons could not be determined, due to the broadness
328	of the signals in the NMR spectra. The three partial structures A-C were established
329	mainly by the analysis of the correlations from the TOCSY and NOESY experiments
330	(Fig. 3). To obtain further information about the amino acid sequence, MALDI-TOF
331	MS and MS/MS analyses was performed. The product ions for brevunsin from the
332	MALDI-TOF MS/MS analysis were suggested to correspond to the fragments of the b -
333	series (b9-b20) and y-series (y3-y5 and y9-y12), which indicated the sequence of Gly-
334	Leu-Val-Arg-Asp-Ser-Leu-Tyr-Pro-Pro-Ala-Gly at the C-terminus (Fig. 4a and Table
335	S3). To confirm the amino acid sequence of the macrolactam ring, a cleavage reaction at

336	the C-terminus peptide bond of Met was performed using cyanogen bromide (CNBr)
337	[6]. After the CNBr reaction, the cleaved brevunsin was purified by HPLC. The
338	molecular formula of the CNBr-cleaved brevunsin was confirmed to be $C_{98}H_{146}N_{24}O_{34}$
339	by accurate ESI-MS analysis, because the ion corresponding to [M+H] ²⁺ was observed
340	at m/z 1102.5282 (calculated m/z value: 1102.5289). In the CNBr reaction, the Met
341	residue of a peptide is reported to be transformed to homoserinelactone (HSL). The
342	MALDI-TOF MS/MS of the cleaved brevunsin gave the sequence of the branched
343	peptide with two new C-terminal ends (Fig 4b and Table S4). The product ions (b'1,
344	b'2, and b'3) indicated the sequence of Asp-Gly-HSL at one C-terminal end. In
345	addition, the product ions (b5, b6, y12, and y13) indicated Asp-Gly-HSL connected to
346	Glu. These data indicated that the α -amine group of the first Asp and the γ -carbonyl
347	group of the 8 th Glu formed an isopeptide bond. The planer chemical structure of
348	brevunsin was determined as shown in Fig. 4a, in combination with the data from the
349	NMR analysis.
350	To determine the stereochemistries of the constituent amino acids in brevunsin, a
351	modified Marfey's method [7] was applied. Briefly, the hydrolysate of brevunsin was
352	derivatized with L-FDLA, and the stereochemistry of each amino acid was determined
353	using HPLC analysis, by comparison with standards (Fig. S21-34). As a result, all of the

354	constituent amino acids were determined to be in the L form. The three-dimensional
355	solution structure of brevunsin was calculated using the software program CNS, version
356	1.1, based on the distance and dihedral angle restraints determined from the NOE
357	intensities (Fig. S19) and ${}^{3}J_{HN\alpha}$ coupling constants (Fig 5). The macrolactam ring
358	consisted of nine amino acids, from Asp1 to Glu9 (yellow in Fig. 5b). The amino acids
359	Gly10, Leu11, Val12, and Arg13 formed a loop structure, and the C-terminal amino
360	acid residues Asp14 to Gly21 passed through the macrolactam ring. The structure of
361	brevunsin was a typical lasso structure, which indicated that the modified genes in the
362	brevunsin biosynthetic gene cluster functioned properly to generate the "lasso"
363	structure, even though brevunsin had an "unusual" N-terminal amino acid with Asp in
364	the core peptide sequence.
365	Thermostability test on brevunsin was performed following previous report [1]. If
366	unthreading of C-terminus linear peptide part in lasso structure happens during heating,
367	unthreaded peptide is detected normally with shorter retention time. In this experiment,
368	possible unthreaded brevunsin was not detected after heating treatment (95 °C for 1hr at
369	most), which indicated thermostablity of brevunsin (Fig. S20). Macrolactam ring of
370	brevunsin comprises of nine amino acids, which is spatially larger than macrolactum
371	ring with seven or eight amino acids. Bulky amino acid Phe at 17th position could

372	contribute to the thermostability by functioning like "plug" not to unthread (Fig. S19).
373	Some lasso peptides have been reported to have antibacterial activities [35, 21, 17].
374	Therefore, we performed an antibacterial activity assay on brevunsin. Following a
375	previous report [22], the paper disk diffusion method was applied with testing
376	microorganisms (bacterial strains, including Escherichia coli, Pseudomonas
377	aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Micrococcus luteus; yeast
378	strains, including Saccharomyces cerevisiae, Schizosaccharomyces pombe; and fungal
379	strains, including Aspergillus niger and Aspergillus oryzae. However, brevunsin did not
380	show any antibacterial activity at the dosage of 50 μ g/disk.
381	In this report, we established a heterologous production system using S. subterranea
382	as a host and successfully produced a new lasso peptide, brevunsin. Many unexplored
383	lasso peptide gene clusters in proteobacteria remain to be explored for heterologous
384	expression [14]. To the best of our knowledge, this is the first report of the heterologous
385	production of a lasso peptide using bacteria that belong to Sphingomonas as a host. In
386	addition, the yield of the lasso peptide brevunsin (10.2 mg/L) was high enough to
387	perform structure determination using NMR and a biological activity test. We believe
388	that this heterologous production system is an efficient tool for the production of other
389	unexplored lasso peptides.

391	References		
392	1.	Allen CD, Chen MY, Trick AY, Le DT, Ferguson AL, Link AJ (2016) Thermal	
393		Unthreading of the Lasso Peptides Astexin-2 and Astexin-3. ACS Chem Biol	
394		11:3043-3051. doi:10.1021/acschembio.6b00588	
395	2.	Brunger AT, Adams PD, Clore GM et al. (1998) Crystallography & NMR	
396		system: a new software suite for macromolecular structure determination. Acta	
397		Crystallogr D Biol Crystallogr 54:905-921	
398	3.	Budisa N (2013) Expanded genetic code for the engineering of ribosomally	
399		synthetized and post-translationally modified peptide natural products (RiPPs).	
400		Curr Opin Biotechnol 24:591-598. doi:10.1016/j.copbio.2013.02.026	
401	4.	Clore GM, Gronenborn AM, Nilges M, Ryan CA (1987) Three-dimensional	
402		structure of potato carboxypeptidase inhibitor in solution. A study using nuclear	
403		magnetic resonance, distance geometry, and restrained molecular dynamics.	
404		Biochemistry 26:8012-8023	
405	5.	Clubb RT, Ferguson SB, Walsh CT, Wagner G (1994) Three-dimensional solution	
406		structure of Escherichia coli periplasmic cyclophilin. Biochemistry 33:2761-	
407		2772	

408	6.	Gross E, Witkop B (1962) Nonenzymatic cleavage of peptide bonds: the
409		methionine residues in bovine pancreatic ribonuclease. J Biol Chem 237:1856-
410		1860
411	7.	Harada KI, Fujii K, Hayashi K, Suzuki M, Ikai Y, Oka H (1996) Application of
412		D,L-FDLA derivatization to determination of absolute configuration of
413		constituent amino acids in peptide by advanced Marfey's method. Tetrahedron
414		Lett 37:3001-3004. doi:https://doi.org/10.1016/0040-4039(96)00484-4
415	8.	Hayashi H, Kurusu Y (2014) Analysis of a DNA region from low-copy-number
416		plasmid pYAN-1 of Sphingobium yanoikuyae responsible for plasmid stability.
417		Biosci Biotechnol Biochem 78:510-515. doi:10.1080/09168451.2014.890029
418	9.	Hayashi H, Kurusu Y (2014) DNA regions responsible for maintenance of
419		Shingobium plasmid pYAN-2. Microbes Environ 29:96-99
420	10.	Hegemann JD, De Simone M, Zimmermann M et al. (2014) Rational
421		improvement of the affinity and selectivity of integrin binding of grafted lasso
422		peptides. J Med Chem 57:5829-5834. doi:10.1021/jm5004478
423	11.	Hegemann JD, Fage CD, Zhu S, Harms K, Di Leva FS, Novellino E, Marinelli
424		L, Marahiel MA (2016) The ring residue proline 8 is crucial for the thermal
425		stability of the lasso peptide caulosegnin II. Mol Biosyst 12:1106-1109.

426 doi:10.1039/c6mb00081a

427	12.	Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2013) Caulosegnins I-
428		III: a highly diverse group of lasso peptides derived from a single biosynthetic
429		gene cluster. J Am Chem Soc 135:210-222. doi:10.1021/ja308173b

- 430 13. Hegemann JD, Zimmermann M, Xie X, Marahiel MA (2015) Lasso peptides: an
- 431 intriguing class of bacterial natural products. Acc Chem Res 48:1909-1919.
- 432 doi:10.1021/acs.accounts.5b00156
- 433 14. Hegemann JD, Zimmermann M, Zhu S, Klug D, Marahiel MA (2013) Lasso
- 434 peptides from proteobacteria: Genome mining employing heterologous
- 435 expression and mass spectrometry. Biopolymers 100:527-542.
- 436 doi:10.1002/bip.22326
- 437 15. Hegemann JD, Zimmermann M, Zhu S, Steuber H, Harms K, Xie X, Marahiel
- 438 MA (2014) Xanthomonins I-III: a new class of lasso peptides with a seven-
- 439 residue macrolactam ring. Angew Chem Int Ed Engl 53:2230-2234.
- 440 doi:10.1002/anie.201309267
- 16. Imbert M, Blondeau R (1999) Effect of light on germinating spores of
- 442 Streptomyces viridosporus. FEMS Microbiol Lett 181:159-163
- 443 17. Iwatsuki M, Tomoda H, Uchida R, Gouda H, Hirono S, Omura S (2006)

444		Lariatins, antimycobacterial peptides produced by <i>Rhodococcus</i> sp. K01-B0171,
445		have a lasso structure. J Am Chem Soc 128:7486-7491. doi:10.1021/ja056780z
446	18.	Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2013) Cumate-inducible gene
447		expression system for sphingomonads and other Alphaproteobacteria. Appl
448		Environ Microbiol 79:6795-6802. doi:10.1128/AEM.02296-13
449	19.	Kaczmarczyk A, Vorholt JA, Francez-Charlot A (2014) Synthetic vanillate-
450		regulated promoter for graded gene expression in Sphingomonas. Sci Rep
451		4:6453. doi:10.1038/srep06453
452	20.	Kersten RD, Yang YL, Xu Y, Cimermancic P, Nam SJ, Fenical W, Fischbach
453		MA, Moore BS, Dorrestein PC (2011) A mass spectrometry-guided genome
454		mining approach for natural product peptidogenomics. Nat Chem Biol 7:794-
455		802. doi:10.1038/nchembio.684
456	21.	Knappe TA, Linne U, Zirah S, Rebuffat S, Xie X, Marahiel MA (2008) Isolation
457		and structural characterization of capistruin, a lasso peptide predicted from the
458		genome sequence of Burkholderia thailandensis E264. J Am Chem Soc
459		130:11446-11454. doi:10.1021/ja802966g
460	22.	Kodani S, Inoue Y, Suzuki M, Dohra H, Suzuki T, Hemmi H, Ohnishi-
461		Kameyama M (2017) Sphaericin, a lasso peptide from the rare actinomycete

462	Planomonospora	sphaerica. Eur J	J Org Chem:1177-	-1183.
-----	----------------	------------------	------------------	--------

- 463 doi:10.1002/ejoc.201601334
- 464 23. Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and
- analysis of macromolecular structures. J Mol Graph 14:51-55, 29-32
- 466 24. Kuroha M, Hemmi H, Ohnishi-Kameyama M, Kodani S (2017) Isolation and
- 467 structure determination of a new lasso peptide subterisin from *Sphingomonas*
- 468 *subterranea*. Tetrahedron Lett 58:3429-3432.
- 469 doi:10.1016/J.TETLET.2017.07.064
- 470 25. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM
- 471 (1996) AQUA and PROCHECK-NMR: programs for checking the quality of
- 472 protein structures solved by NMR. J Biomol NMR 8:477-486
- 473 26. Letzel AC, Pidot SJ, Hertweck C (2014) Genome mining for ribosomally
- 474 synthesized and post-translationally modified peptides (RiPPs) in anaerobic
- 475 bacteria. BMC Genomics 15:983. doi:10.1186/1471-2164-15-983
- 476 27. Li Y, Zirah S, Rebuffat S (2015) Lasso Peptides: Bacterial Strategies to Make
- 477 and Maintain Bioactive Entangled Scaffolds. Springer,
- 478 28. Link AJ (2015) Biosynthesis: Leading the way to RiPPs. Nat Chem Biol
- 479 11:551-552. doi:10.1038/nchembio.1862

480	29.	Maksimov MO, Link AJ (2014) Prospecting genomes for lasso peptides. J Ind
481		Microbiol Biotechnol 41:333-344. doi:10.1007/s10295-013-1357-4
482	30.	Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure,
483		function, biosynthesis, and engineering. Nat Prod Rep 29:996-1006.
484		doi:10.1039/c2np20070h
485	31.	Maksimov MO, Pan SJ, James Link A (2012) Lasso peptides: structure,
486		function, biosynthesis, and engineering. Nat Prod Rep 29:996-1006.
487		doi:10.1039/c2np20070h
488	32.	Maksimov MO, Pelczer I, Link AJ (2012) Precursor-centric genome-mining
489		approach for lasso peptide discovery. Proc Natl Acad Sci U S A 109:15223-
490		15228. doi:10.1073/pnas.1208978109
491	33.	Martin-Gomez H, Tulla-Puche J (2018) Lasso peptides: chemical approaches
492		and structural elucidation. Org Biomol Chem. doi:10.1039/c8ob01304g
493	34.	Metelev M, Tietz JI, Melby JO, Blair PM, Zhu L, Livnat I, Severinov K,
494		Mitchell DA (2015) Structure, bioactivity, and resistance mechanism of
495		streptomonomicin, an unusual lasso Peptide from an understudied halophilic
496		actinomycete. Chem Biol 22:241-250. doi:10.1016/j.chembiol.2014.11.017
497	35.	Salomon RA, Farias RN (1992) Microcin 25, a novel antimicrobial peptide

498		produced by Escherichia coli. J Bacteriol 174:7428-7435
499	36.	Sardar D, Schmidt EW (2016) Combinatorial biosynthesis of RiPPs: docking
500		with marine life. Curr Opin Chem Biol 31:15-21.
501		doi:10.1016/j.cbpa.2015.11.016
502	37.	Solbiati JO, Ciaccio M, Farias RN, Salomon RA (1996) Genetic analysis of
503		plasmid determinants for microcin J25 production and immunity. J Bacteriol
504		178:3661-3663
505	38.	Tietz JI, Schwalen CJ, Patel PS, Maxson T, Blair PM, Tai HC, Zakai UI,
506		Mitchell DA (2017) A new genome-mining tool redefines the lasso peptide
507		biosynthetic landscape. Nat Chem Biol. doi:10.1038/nchembio.2319
508	39.	Wuthrich K, Billeter M, Braun W (1983) Pseudo-structures for the 20 common
509		amino acids for use in studies of protein conformations by measurements of
510		intramolecular proton-proton distance constraints with nuclear magnetic
511		resonance. J Mol Biol 169:949-961
512	40.	Zimmermann M, Hegemann JD, Xie X, Marahiel MA (2013) The astexin-1
513		lasso peptides: biosynthesis, stability, and structural studies. Chem Biol 20:558-
514		569. doi:10.1016/j.chembiol.2013.03.013
515	41.	Zong C, Wu MJ, Oin JZ, Link AJ (2017) Lasso peptide benenodin-1 is a

- 517 doi:10.1021/jacs.7b04830
- 518

519 Acknowledgments

- 520 This study was supported by the Japan Society for the Promotion of Science by Grants-
- 521 in-aids (grant number 16K01913). We thank Ms. Tomoko Sato for measurement of

522 MS/MS data.

523 Additional information

- 524 Supplementary information accompanies this paper online.
- 525 **Competing Interests:** The authors declare that they have no competing interests.

527 Figure legends

528

- 529 Figure 1. Biosynthetic gene cluster of brevunsin
- 530 Figure 2. Construction of heterologous expression vector pHSG396Sp-12697L,
- 531 underlined letter indicates promoter sequence, bold letter indicates XbaI recognition site
- 532 Figure 3. Key 2D NMR correlations to construct three partial structures A-C (bold line:
- 533 TOCSY, double ended arrow: NOESY)
- 534 Figure 4. a) MS/MS experiment on brevunsin, b) MS/MS experiment on CNBr-cleaved
- 535 brevunsin
- 536 Figure 5. NMR-derived structures of brevunsin: (a) superposition of the 15 lowest-
- 537 energy structures and (b) the lowest-energy structure of brevunsin. The isopeptide bond
- 538 between Asp1 and Glu9 is shown in red. The ring-forming residues are shown in
- 539 yellow, and the loop and the tail in blue.

541 Figure legends

542

- 543 Figure 1. Biosynthetic gene cluster of brevunsin
- 544 Figure 2. Construction of heterologous expression vector pHSG396Sp-12697L,
- ⁵⁴⁵ underlined letter indicates promoter sequence, bold letter indicates XbaI recognition
- 546 site.
- 547 Figure 3. Key 2D NMR correlations to construct three partial structures A-C
- 548 Figure 4. a) MS/MS experiment on brevunsin, b) MS/MS experiment on CNBr-cleaved
- 549 brevunsin
- 550 Figure 5. NMR-derived structures of brevunsin: (a) superposition of the 15 lowest-
- 551 energy structures and (b) the lowest-energy structure of brevunsin. The isopeptide bond
- between Asp1 and Glu9 is shown in red. The ring-forming residues are shown in
- 553 yellow, and the loop and the tail in blue.

559 Figure 2

561 Figure 3

Partial structure C

OH

562 Figure 4

