

Vibrations in hemipteran and coleopteran insects: behaviors and application in pest management

メタデータ	言語: English
	出版者:
	公開日: 2020-06-02
	キーワード (Ja):
	キーワード (En): vibrational signals, communication,
	pest control, behavioral disruption, sense organ
	作成者: 上地, 奈美
	メールアドレス:
	所属:
URL	https://repository.naro.go.jp/records/3384
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

1	Vibrations in hemipteran and coleopteran insects: behaviors and application in
2	pest management
3	
4	Takuma Takanashi ¹ *, Nami Uechi ² , Haruki Tatsuta ^{3,4}
5	
6	¹ Department of Forest Entomology, Forestry and Forest Products Research Institute,
7	Tsukuba, Ibaraki 305-8687, Japan
8	² NARO Institute of Fruit Tree and Tea Science, National Agriculture and Food
9	Research Organization, Tsukuba, Ibaraki 305-8605, Japan
10	³ Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the
11	Ryukyus, Okinawa 903-0213, Japan
12	⁴ The United Graduate School of Agricultural Sciences, Kagoshima University,
13	Korimoto 1-21-24, Kagoshima 890-8580, Japan
14	
15	*Correspondence: takanasi@affrc.go.jp

17 Abstract

18	Many groups of insects utilize substrate-borne vibrations for communication. They
19	display various behaviors in response to vibrations in sexual and social communication
20	and in predator-prey interactions. Although the number of reports on communication
21	and behaviors using vibrations has continued to increase across various insect orders,
22	there are several studies of the exploitation of vibrations for pest management in
23	Hemiptera and Coleoptera. Here, we review studies of behaviors and communication
24	using vibrations in hemipteran and coleopteran insects. For instance, pentatomid bugs
25	display species- and sex-specific vibrational signals during courtship, whereas
26	cerambycid beetles show startle responses to vibrations in the context of predator-prey
27	interactions. Concepts and case studies in pest management using
28	vibrations—especially regarding the disruption of communication and behavior—are
29	also presented.
30	
31	Key words vibrational signals, communication, pest control, behavioral disruption,
32	sense organ

34 Introduction

35	Many insect species utilize mechanical information from substrate-borne vibrations or
36	airborne sounds, or both, for various behaviors (Cocroft and Rodríguez 2005;
37	Greenfield 2002; Hill 2008). Vibrations account for the majority of mechanical
38	communications, and the number of species that use vibrations is estimated as 195,000
39	or more (Cocroft and Rodríguez 2005). Vibrations travel well through plants or other
40	substrates, allowing conspecifics and/or predators to detect the vibrations (Michelsen et
41	al. 1982).
42	Insects display various behaviors in response to vibrations. The functional
43	significance of vibration-mediated interactions can be classified into i) sexual
44	communication; ii) social communication; and iii) predator-prey interactions (e.g. Hill
45	2008; Takanashi et al. 2016). Sexual communication is mediated by vibrational sexual
46	signals or aggressive signals (Hill 2008). For instance, males of the brown planthopper
47	Nilaparvata lugens Stål (Delphacidae) locate females that produce vibrations by
48	drumming their abdomens on the rice plant (Ichikawa and Ishii 1974). In prairie mole
49	cricket Gryllotalpa major Saussure (Gryllotalpidae), males use the vibrations of rivals'
50	calls transmitted via the ground, instead of the sounds of their calls through the air, to
51	maintain space each other in a lek (Hill 2008; Hill and Shadley 2001). With regard to

52	social communication, synchronous hatching of the brown marmorated stink bug
53	Halyomorpha halys (Stål) (Pentatomidae) is induced by single eggshell-cracking
54	vibration over a short period in a clutch of eggs in contact with each other (Endo et al.
55	2018). Mutualism between Iridomyrmex ants (Formicidae) and lycaenid butterflies is
56	engaged by vibrational signals emitted by larvae and pupae of the butterfly (Travassos
57	and Pierce 2000). Predator-prey interactions include prey localization and antipredatory
58	behavior using vibrational cues (Hill 2008). The parasitoid wasp Sympiesis sericeicornis
59	Nees (Eulophidae) perceives the exact locations of its lepidopteran host in leaf mines by
60	eavesdropping on vibrations (Djemai et al. 2004). The red flour beetle Tribolium
61	castaneum (Herbst) (Tenebrionidae) shows tonic immovability (death-feigning) in
62	response to vibrations as a defense against predators (Kiyotake et al. 2014).
63	Although the number of reports of communication and behaviors using vibrations
64	has continued to increase across various insect orders (Greenfield 2002; Hill 2008;
65	Virant-Doberlet and Čokl 2004), studies of pest species damaging plants remain limited
66	in Hemiptera, Coleoptera and a few other orders (e.g., Endo et al. 2018; Ichikawa and
67	Ishii 1974; Polajnar et al. 2015). In particular, pest control by exploiting such signals
68	has been studied in Hemiptera and Coleoptera alone (Eriksson et al. 2012; Hosomi
69	1996; Lujo et al. 2016; Polajnar et al. 2015). Indeed, hemipteran and coleopteran insects

70	exhibit a variety of vibrational communications and behaviors. In this review, we focus
71	on Hemiptera and Coleoptera in studies of both behavior and pest management using
72	vibrations. We also review vibrational senses, behaviors, and communication in
73	Hemiptera and Coleoptera, and we discuss the effectiveness of vibrations in pest
74	management.
75	
76	Vibrational senses
77	In insects, the sense organs involved with vibrations are internal mechanoreceptors,
78	called chordotonal organs, which are located in the legs and other body parts (Field and
79	Matheson 1998; Hill 2008). Two chordotonal organs in the legs-the femoral
80	chordotonal organs and subgenual organs-play an important role in vibrational
81	reception (Field and Matheson 1998). The chordotonal organs, within which the neurons
82	are clustered into scoloparia, consist of multiple sensory neurons and attachment cells;
83	for example, there are 24 sensory neurons in the brown-winged green bug Plautia stali
84	Scott (Pentatomidae) and 70 sensory neurons in the Japanese pine sawyer beetle

85 Monochamus alternatus Hope (Cerambycidae) (Fig. 1) (Nishino et al. 2016; Takanashi

- 86 et al. 2016). The sensory neurons respond with high sensitivity to vibrations via the
- 87 attachment cells (Field and Matheson 1998). The femoral chordotonal organ of M.

88	alternatus is attached to the tibia via a cuticular apodeme, whereas that of P. stali is
89	attached to the tibia via attachment cells, without the apodeme (Fig. 1b, e). In both
90	species, vibrations are transmitted from substrates via the tibia to the femoral
91	chordotonal organs. The subgenual organs in the tibia possess air sacs for transmission
92	of vibrations in orthopteran insects, but not in P. stali (Field and Matheson 1998;
93	Nishino et al. 2016). Coleopteran insects including M. alternatus do not have subgenual
94	organs (Takanashi et al. 2016). There are other mechanoreceptors, such as external ones
95	for detecting strain on cuticular surfaces (Čokl and Virant-Doberlet 2003; Keil 1997).
96	
97	Vibrational communications and behaviors
97 98	Vibrational communications and behaviors Hemiptera
98	Hemiptera
98 99	<i>Hemiptera</i> Heteroptera, the so-called stink bugs or true bugs, are large group in the order
98 99 100	Hemiptera Heteroptera, the so-called stink bugs or true bugs, are large group in the order Hemiptera. Pheromones are well-known communication signals in this order. Male
98 99 100 101	Hemiptera Heteroptera, the so-called stink bugs or true bugs, are large group in the order Hemiptera. Pheromones are well-known communication signals in this order. Male adults attract adults and nymphs of both sexes by using pheromones (e.g., Mizutani
98 99 100 101 102	Hemiptera Heteroptera, the so-called stink bugs or true bugs, are large group in the order Hemiptera. Pheromones are well-known communication signals in this order. Male adults attract adults and nymphs of both sexes by using pheromones (e.g., Mizutani 2006). Vibrations are also widely used among stink bugs. Chemical signals such as

106	using vibrations as communication signals and to have mechanisms for producing
107	vibrations (Virant-Doberlet and Čokl 2004; for examples of these families, see Table 1).
108	In many cases, vibrations are used for male courtship and for communication between
109	sexes [e.g., Čokl et al. 1978 for the southern stink bug, Nezara viridula (Linnaeus)
110	(Pentatomidae); Kon et al. 1988 for the eastern green stink bug, Nezara antennata Scott
111	and N. viridula (Pentatomidae); Numata et al. 1989 for the bean bug, Riptortus pedestris
112	(Fabricius) (Alydidae); Polajnar et al. 2016b for <i>H. halys</i> (Pentatomidae)]. Adults of <i>N</i> .
113	viridula produce several stereotyped species- and sex-specific vibrational signals in the
114	course of their courtship. The signals, called songs, are often exchanged in a duet (Čokl
115	et al. 2000). Most of the Pentatominae species studied so far show similar behavioral
116	sequences and vibrational repertoires and syntax (Virant-Doberlet and Čokl 2004).
117	However, some songs might be missing from some repertoires, and different repertoires
118	might be added (Virant-Doberlet and Čokl 2004).
119	Vibrations are also used as signals for parent-embryo communication. In the
120	subsocial burrower bugs Adomerus rotundus (Hsiao) (Cydnidae) and Parastrachia
121	japonensis Scott (Parastrachiidae), mothers produce vibrations by shaking their bodies
122	rhythmically while maintaining an egg-guarding posture. The vibrations promote
123	synchronous hatching (Mukai 2016; Mukai et al. 2012, 2014), which decreases the

 $\overline{7}$

124	frequency of sibling cannibalism (Mukai et al. 2018). Unlike the subsocial burrower
125	bugs, H. halys does not guard its eggs, but it does synchronize hatching (Endo and
126	Numata 2017). Synchronous hatching of <i>H. halys</i> is induced by single eggshell-cracking
127	vibration in a clutch of eggs (Endo et al. 2018). Hemipteran embryos generally may
128	have an ability of responses to vibrations. A mother of <i>P. japonensis</i> vibrates her
129	abdomen and produces a low-pitched fluttering sound when she serves food (drupes) to
130	her nymphs in their nest. This provisioning call is considered to be a type of
131	parent-offspring communication (Nomakuchi et al. 2012). By using the provisioning
132	call as a cue, nymphs are likely to be able to distinguish between mother and predators
133	when the female enters the nest (Nomakuchi et al. 2012).
133 134	when the female enters the nest (Nomakuchi et al. 2012). Vibrations are also used as information for defense or predation against different
134	Vibrations are also used as information for defense or predation against different
134 135	Vibrations are also used as information for defense or predation against different species. In Cydnidae and Reduviidae, in which the nymphs constitute a colony,
134 135 136	Vibrations are also used as information for defense or predation against different species. In Cydnidae and Reduviidae, in which the nymphs constitute a colony, individuals in the same colony vibrate together as a collective defense against predators
134 135 136 137	Vibrations are also used as information for defense or predation against different species. In Cydnidae and Reduviidae, in which the nymphs constitute a colony, individuals in the same colony vibrate together as a collective defense against predators (Čokl and Virant-Doberlet 2003). Adults of some species of Triatominae, a subfamily of
134 135 136 137 138	Vibrations are also used as information for defense or predation against different species. In Cydnidae and Reduviidae, in which the nymphs constitute a colony, individuals in the same colony vibrate together as a collective defense against predators (Čokl and Virant-Doberlet 2003). Adults of some species of Triatominae, a subfamily of Reduviidae, produce defensive vibrations using a stridulatory organ when disturbed or

142	Among the suborder Auchenorrhyncha, vibrational communications are spread
143	across several families (Table 1). Ichikawa and Ishii (1974) discovered that males of the
144	brown planthopper N. lugens (Delphacidae: Fulgoromorpha) use females vibrations for
145	mate location on the rice plant. In response to the female vibrations, the males also
146	produce vibrations with abdominal tymbals, which exist in Auchenorrhyncha and
147	Heteroptera (Hoch et al. 2006; Ichikawa 1976; Mitomi et al. 1984). Similarly, both
148	sexes use vibrations for mate location in Cicadomorpha [e.g., the American grapevine
149	leafhopper, Scaphoideus titanus Ball (Cicadellidae) and some species of treehoppers
150	(Membracidae); Cocroft and Rodríguez 2005; Mazzoni et al. 2009]. Furthermore, males
151	of S. titanus produce disturbance vibrations against rival males (Mazzoni et al. 2009).
152	Mothers of the thorn bug treehopper Umbonia crassicornis (Amyot and Serville) defend
153	their offspring against attacking predators after they produce vibrations for the purposes
154	of aggregation (Cocroft 1996).
155	Among Sternorrhyncha, both sexes of whiteflies (Aleyrodidae) produce vibrations
156	by drumming the abdomen for communication on the leaf of a host plant [e.g., the
157	greenhouse whitefly Trialeurodes vaporariorum (Westwood), the sweet potato whitefly
158	Bemisia tabaci (Gennadius) and the woolly whitefly Aleurothrixus floccosus Maskell;
159	Kanmiya 1996, 2006; Kanmiya and Sonobe 2002]. Male vibrations are species-specific

160	in terms of temporal and spectral characteristics, suggesting that vibrational signals are
161	used for species recognition (Kanmiya 2006). Males of the Asian citrus psyllid,
162	Diaphorina citri Kuwayama (Liviidae), locate females that are producing vibrations; the
163	males intermittently produce vibrational replies as a duet (Lujo et al. 2016; Wenninger
164	et al. 2009). In the sweet pepper aphid, Aphis nerii Boyer de Fonscolombe (Aphididae),
165	and the large cat's ear aphid Uroleucon hypochoeridis (Fabricius) (Aphididae), visual
166	signals in combination with twitching-related vibrations on the plant constitute a
167	synchronizing defense against insect predators (Hartbauer 2010). Nymphs of the pea
168	aphid, Acyrthosiphon pisum Harris (Aphididae), drop off the host plant in response to
169	vibrations and other stimuli, such as the humid breath of mammalian herbivores (Gish et
170	al. 2012).
171	

172 Coleoptera

Coleoptera is the largest insect order and includes many pest species. Although there are
numerous reports of sound production by stridulatory organs across various coleopteran
families (Wessel 2006), most of these reports concern vibrational communication or
interactions (Table 2). In the mountain pine beetle *Dendroctonus ponderosae* (Hopkins)
(Curculionidae), stridulation generates vibrations on the host tree as well as airborne

178	sounds, presumably for sexual communication at close range (Flemming et al. 2013).
179	Males of the deathwatch beetle Xestobium rufovillosum (De Geer) (Anobiidae) tap their
180	heads on the substrate; this enables them to locate females emitting vibrational replies at
181	long range (Goulson et al. 1994). Among tenebrionid species, males of Psammodes
182	striatus (Fabricius) tap their abdomens on the substrate for sexual communication, with
183	a range of >50 cm (Lighton 1987). Onymacris plana plana Péringuey (Tenebrionidae)
184	is sensitive to vibrations between 100 and 5000 Hz, presumably for detecting food
185	through vibrations generated by the wind on the surface of the sand (Hanrahan and
186	Kirchner 1994). As a defense against predators, the red flour beetle T. castaneum
187	(Tenebrionidae) shows tonic immovability (death-feigning) in response to vibrations
188	(Kiyotake et al. 2014). Vibration-induced tonic immovability is also found in the
189	Colorado potato beetle, Leptinotarsa decemlineata Say (Chrysomelidae) (Acheampong
190	and Mitchell 1997), and the sap beetle, Phenolia (Lasiodites) picta (MacLeay)
191	(Nitidulidae) (Kishi and Takanashi 2019). In cerambycids, startle and freezing responses
192	are induced by vibrations in M. alternatus, Paraglenea fortunei (Saunders), and the
193	house longhorn beetle, Hylotrupes bajulus (Linnaeus) (Breidbach 1986; Takanashi et al.
194	2016; Tsubaki et al. 2014). The responses seem to serve as recognition of approaching
195	conspecifics or predators.

196	Vibrations mediate communication or interactions among adults, larvae, and pupae.
197	Group-living larvae of Trypoxylus dichotomus (Linnaeus) (Scarabaeidae) freeze in
198	response to vibrations produced by drumming pupae, thereby protecting the pupal cells
199	in the soil (Kojima et al. 2012c). The freezing response to pupae of <i>T. dichotomus</i> is
200	likely to have evolved from the response to predators because larvae also show freezing
201	to vibrations produced by moles (Kojima et al. 2012a, b). Females of the cowpea beetle
202	Callosobruchus maculatus (Fabricius) (Chrysomelidae) use vibrations from feeding
203	larvae within a host bean for the purpose of oviposition (Guedes and Yack 2016).
204	
205	Pest control using vibrations
206	The importance of physical pest control by using lights or other non-chemical methods
207	has been increasing in response to societal needs for environmentally friendly
208	
_00	alternatives to synthetic pesticides (Polajnar et al. 2015; Shimoda and Honda 2013).
209	alternatives to synthetic pesticides (Polajnar et al. 2015; Shimoda and Honda 2013). Knowledge of sensitivities and behaviors in response to vibrations is applicable to pest
209	
	Knowledge of sensitivities and behaviors in response to vibrations is applicable to pest
209 210	Knowledge of sensitivities and behaviors in response to vibrations is applicable to pest management for behavioral manipulation and disruption. To apply artificial vibrations to

- see Polajnar et al. 2015). Below, we present in detail some examples of disruption of
 vibrational communication or behavior.
- 217 Disruption of vibrational communication

218 In pest species that use vibrational communication between sexes, it is a rational

- strategy to disrupt this communication with artificial vibrations. Here, we review two
- 220 successful cases. Males of S. titanus, a vector of the lethal grapevine disease
- 221 Flavescence dorée, produce male-disturbance vibrations as well as sexual signals
- 222 (Mazzoni et al. 2009). Eriksson et al. (2012) demonstrated vibrational disruption of this
- 223 species by using mimic disturbance vibrations from an electromagnetic shaker. When
- the disturbance vibrations were transmitted to grapevines through a supporting wire, the
- 225 mating frequency in field cages of the species decreased significantly. The amplitude
- threshold for efficacy in mating disruption was determined in the laboratory and
- validated in the field (Polajnar et al. 2016a). The other example is communication
- 228 disruption in D. citri, which is a vector of citrus greening disease, one of the most
- destructive citrus disease worldwide (Hall et al. 2013). The two sexes of this species
- exchange vibrational communication to locate each other (Wenninger et al. 2009).
- 231 Application of female vibrational mimics generated by a piezoelectric buzzer led to a

significant decrease in the mating percentage on a citrus tree (Lujo et al. 2016).

233

234 Disruption of behavior with vibrations

235	Cerambycids-the so-called longicorn beetles-include many pests, and their larvae
236	damage fruit and ornamental trees. These beetles include serious pests known to be
237	invasive species and vectors of tree diseases (Kobayashi et al. 1984; Wang 2017). In
238	cerambycids, although vibrational communication for mate localization over long
239	ranges has not yet been found, a series of behaviors is displayed in response to
240	vibrations (Breidbach 1986; Takanashi et al. 2016; Tsubaki et al. 2014). This means that
241	various cerambycid behaviors can be disrupted by artificial vibrations for pest control.
242	Indeed, Hosomi (1996) investigated vibrational disruption by using mechanical knocker
243	on fig trees against adults of Apriona japonica Thomson. Intermittent vibrations at 5 to
244	40 Hz disrupt feeding to some extent, but not oviposition. No fatal negative effects of
245	the vibrations on fruit and shoot growth have been detected (Hosomi 1996).
246	Monochamus alternatus, the vector of the pine wilt nematodes that kill pine trees
247	(Kobayashi et al. 1984), demonstrates freezing and startle responses when exposed to
248	vibrations below 1 kHz (Fig. 2) (Takanashi et al. 2016). The freezing is mediated by
249	femoral chordotonal organs (Fig. 1b, c) that detect low-frequency vibrations (Takanashi

250	et al. 2016). Also, P. fortunei dwelling on herbaceous plants shows freezing and startle
251	responses when exposed to low-frequency vibrations (Fig. 2) (Takanashi et al. 2016;
252	Tsubaki et al. 2014). Thus, these two cerambycid beetles show high sensitivity to
253	frequencies of 100 to 500 Hz (Fig. 2). Because freezing means cessation of walk and
254	other behavior, low-frequency vibrations are assumed to disrupt the feeding, oviposition,
255	and residence of cerambycids on host trees. Also, it is possible that vibrations enhance
256	repellency, that is, escape from the host tree. Preliminary experiments have shown that
257	feeding and other behaviors in <i>M. alternatus</i> are disrupted by low-frequency vibrations
258	(T. Takanashi et al. unpublished data). Low-frequency vibrations might therefore be also
259	useful for pest control in cerambycids.
259 260	useful for pest control in cerambycids. On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are
260	On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are
260 261	On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are currently developing a new procedure for pest management by using vibrations as an
260 261 262	On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are currently developing a new procedure for pest management by using vibrations as an environmentally friendly alternative to synthetic pesticides. To generate vibrations at
260 261 262 263	On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are currently developing a new procedure for pest management by using vibrations as an environmentally friendly alternative to synthetic pesticides. To generate vibrations at large amplitudes on trees, a prototype of a vibration exciter was made by using a giant
260 261 262 263 264	On the basis of our findings of vibrational sensitivity in cerambycid beetles, we are currently developing a new procedure for pest management by using vibrations as an environmentally friendly alternative to synthetic pesticides. To generate vibrations at large amplitudes on trees, a prototype of a vibration exciter was made by using a giant magnetostrictive material (GMM) as a new technology (Fig. 3). GMM, an alloy

268	power to disrupt the behaviors of target pests (Takanashi et al. 2016). In addition,
269	intermittent application of vibrations can help avoid the problem of habituations to
270	vibrations. Our pilot experiments demonstrated disruption of behavior in <i>M. alternatus</i>
271	by a GMM vibration exciter attached to a tree (H. Sakamoto, T. Koike, N. Fukaya, T.
272	Takanashi in preparation); this was also shown in the brown-winged green bug, P. stali
273	(N. Uechi and T. Takanashi in preparation). Future studies are essential to explore and
274	resolve several issues, including installation of the exciter and jigs for vibrational
275	transmission, reduction of the cost of the exciter, and the possibility of side-effects on
276	plants and other organisms.
	Lenne were endered
277	Lange and collection
	Conclusion
277	
277 278	Conclusion
277 278 279	Conclusion Because many insects in a variety of taxa exhibit sensitivity to vibrations (Cocroft and
277 278 279 280	Conclusion Because many insects in a variety of taxa exhibit sensitivity to vibrations (Cocroft and Rodríguez 2005; Greenfield 2002; Hill 2008), artificial vibrations are applicable to the
277 278 279 280 281	Conclusion Because many insects in a variety of taxa exhibit sensitivity to vibrations (Cocroft and Rodríguez 2005; Greenfield 2002; Hill 2008), artificial vibrations are applicable to the disruption of behaviors or communication. Furthermore, a vibration exciter that uses

future (Polajnar et al. 2015). Potential negative side effects of the vibrations on plants

and non-target beneficial insects will need to be minimized (Polajnar et al. 2015). We
should be able to find the most appropriate procedures to use against various pests, and
we will be able to promote IPM by combining several existing procedures with newly
developed technologies, including vibration.

290

291 Acknowledgements

- 292 We thank H. Nishino for the drawing of chordotonal organs in *P. stali*, K. Honda and
- 293 members of Shindou unit for kind cooperation during studies of SIP project. Thanks are
- also due to two anonymous reviewers for helpful comments of this manuscript and
- 295 editors for kind handling of this special issue, 'Behavioral control and pest management
- using vibrations'. This work was partly supported by Cabinet Office, Government of
- 297 Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP), "Technologies
- 298 for creating next-generation agriculture, forestry and fisheries" (funding agency:
- Bio-oriented Technology Research Advancement Institution, NARO) and by Narishige
- 300 Zoological Science Award.

301

302 References

303 Acheampong S, Mitchell BK (1997) Quiescence in the Colorado potato beetle,

- 304 *Leptinotarsa decemlineata*. Entomol Exp Appl 82:83–89
- Breidbach O (1986) Studies on the stridulation of *Hylotrupes bajulus* (L.)
- 306 (Cerambycidae, Coleoptera): communication through support vibration-
- 307 morphology and mechanics of the signal. Behav Proc 12:169–186
- 308 Claridge MF, Morgan JC, Moulds MS (1999) Substrate-transmitted acoustic signals of
- 309 the primitive cicada, *Tettigarcta crinita* Distant (Hemiptera: Cicadoidea:
- 310 Tettigarctidae). J Natur Hist 33:1831–1834
- 311 Cocroft RB (1996) Insect vibrational defence signals. Nature 382:679–680
- 312 Cocroft RB, Rodríguez R (2005) The behavioral ecology of insect vibrational
- 313 communication. BioScience 55:323–334
- Čokl A, Gogala A, Blaževič A (1978) Principles of sound recognition in three
- 315 Pentatomide bug species (Heteroptera). Biol Vestn 26:81–94
- 316 Čokl A, Virant-Doberlet M (2003) Communication with substrate-borne signals in small
- 317 plant-dwelling insects. Ann Rev Entomol 48:29–50
- 318 Čokl A, Virant-Doberlet M, Mcdowell A (1999) Vibrational directionality in the
- 319 southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim
- 320 Behav 58:1277–1283

321	Čokl A, Virant-Doberlet M, Stritih N (2000) The structure and function of songs emitted
322	by southern green stink bugs from Brazil, Florida, Italy and Slovenia. Physiol
323	Entomol 25:196–205
324	Djemai I, Casas J, Magal C (2004) Parasitoid foraging decisions mediated by artificial
325	vibrations. Anim Behav 67:567–571
326	Eben A, Mühlethaler R, Gross J, Hoch H (2014) First evidence of acoustic
327	communication in the pear psyllid Cacopsylla pyri L. (Hemiptera: Psyllidae). J Pest
328	Sci 88:87–95
329	Endo J, Numata H (2017) Effects of embryonic responses to clutch mates on egg
330	hatching patterns of Pentatomidae (Heteroptera). Physiol Entomol 42:412-417

- 331 Endo J, Takanashi T, Mukai H, Numata H (2018) Egg-cracking vibration as a cue for
- 332 stink bug siblings to synchronize hatching. Curr Biol.
- 333 https://doi.org/10.1016/j.cub.2018.11.024
- 334 Eriksson A, Anfora G, Lucchi A, Lanzo F, Virant-Doberlet M, Mazzoni V (2012)
- 335 Exploitation of insect vibrational signals reveals a new method of pest management.
- 336 Plos One 7:e32954
- 337 Field LH, Matheson T (1998) Chordotonal organs in insects. Adv Insect Physiol 27:1-
- 338 228

339	Fleming AJ, Lindeman AA, Carroll AL, Yack JE (2013) Acoustics of the mountain
340	pine beetle (Dendroctonus ponderosae) (Curculionidae, Scolytinae): sonic,
341	ultrasonic, and vibration characteristics. Can J Zool 91:235-244
342	Gish M, Dafni A, Inbar M (2012) Young aphids avoid erroneous dropping when evading
343	mammalian herbivores by combining input from two sensory modalities. Plos One
344	7:e32706
345	Gogala M (1984) Vibration producing structures and songs of terrestrial Heteroptera as
346	systematic character. Biol Vestn 32:19-36
347	Gogala M (1990) Distribution of low frequency vibrational songs in local Heteroptera.
348	Scopolia Suppl 1:125–132
349	Goulson D, Birch MC, Wyatt TD (1994) Mate location in the deathwatch beetle,
350	Xestobium rufovillosum De Geer (Anobiidae): orientation to substrate vibrations.
351	Anim Behav 47:899–907
352	Greenfield MD (2002) Signalers and receivers. Oxford University Press, New York
353	Guedes RNC, Yack JE (2016) Shaking youngsters and shaken adults: female beetles
354	eavesdrop on larval seed vibrations to make egg-laying decisions. Plos One
355	11:e0150034
356	Hall DG, Richardson ML, Ammar ED, Halbert SE (2013) Asian citrus psyllid,
	22

- 357 *Diaphorina citri*, vector of citrus huanglongbing disease. Entomol Exp Appl
- 358 146:207–223
- 359 Hanrahan SA, Kirchner WH (1994) Acoustic orientation and communication in desert
- tenebrionid beetles in sand dunes. Ethology 97:26–32
- 361 Hartbauer M (2010) Collective defense of Aphis nerii and Uroleucon hypochoeridis
- 362 (Homoptera, Aphididae) against natural enemies. Plos One 5:e10417
- 363 Hill PSM (2008) Vibrational communication in animals. Harvard university press,
- 364 Cambridge
- 365 Hill PSM, Shadley JR (2001) Talking back: sending soil vibration signals to lekking
- 366 prairie mole cricket males. Am Zool 41:1200–1214
- 367 Hoch H, Deckert J, Wessel A (2006) Vibrational signalling in a Gondwanan relict insect
- 368 (Hemiptera: Coleorrhyncha: Peloridiidae). Biol Lett 2:222–224
- 369 Hoch H, Mühlethaler R, Wachmann E, Stelbrink B, Wessel A (2011) Celebenna
- 370 thomarosa gen. n., sp. n. (Hemiptera, Fulgoromorpha, Cixiidae, Bennini) from
- 371 Indonesia: Sulawesi with notes on its ecology and behaviour. Dtsch Entomol Z
- 372 58:241–250
- 373 Hosomi A (1996) Effect of vibration to the infestation of Apriona japonica (Thomson)
- 374 (Coleoptera: Cerambycidae) adults on the fig. Proceedings of Japan informal group

375	meeting on human response to vibration held at the Hokkaido safety and health
376	service, 25–34
377	Ichikawa T (1976) Mutual communication by substrate vibrations in the mating
378	behavior of planthoppers (Homoptera: Delphacidae). Appl Entomol Zool 11:8–21
379	Ichikawa T, Ishii S (1974) Mating signal of the brown planthopper, Nilaparvata lugens
380	Stål (Homoptera: Delphacidae): vibration of the substrate. Appl Entomol Zool
381	9:196–198
382	Kanmiya K (1996) Discovery of male acoustic signals in the greenhouse whitefly,
383	Trialeurodes vaporariorum (Westwood) (Homoptera: Aleyrodidae). Appl Entomol
384	Zool 31:255–262
385	Kanmiya K (2006) Mating behaviour and vibratory signals in whiteflies (Hemiptera:
386	Aleyrodidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and
387	communication: physiology, behaviour, ecology and evolution, Taylor and Francis,
388	London, pp 365–379
389	Kanmiya K, Sonobe R (2002) Records of two citrus pest whiteflies in Japan with
390	special reference to their mating sounds (Homoptera: Aleyrodidae). Appl Entomol

391 Zool 37:487–495

Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech
393 39:506–531

- 394 Kishi M, Takanashi T (2019) Tonic immobility and startle responses induced by
- 395 substrate-borne vibrations in the sap beetle, *Phenolia (Lasiodites) picta* (Coleoptera:
- 396 Nitidulidae). Jpn J Appl Entomol Zool (in press) (In Japanese with English abstract)
- 397 Kiyotake H, Matsumoto H, Nakayama S, Sakai M, Miyatake T, Ryuda M, Hayakawa
- 398 Y (2014) Gain of long tonic immobility behavioral trait causes the red flour beetle
- to reduce anti-stress capacity. J Insect Physiol 60:92–97
- 400 Kobayashi F, Yamane A, Ikeda T (1984) The Japanese pine sawyer beetle as the vector
- 401 of pine wilt disease. Ann Rev Entomol 29:115-135
- 402 Kojima W, Ishikawa Y, Takanashi T (2012a) Deceptive vibratory communication: pupae
- 403 of a beetle exploit the freeze response of larvae to protect themselves. Biol Lett
- 404 8:717–720
- 405 Kojima W, Ishikawa Y, Takanashi T (2012b) Pupal vibratory signals of a group-living
- 406 beetle that deter larvae: are they mimics of predator cue? Commun Integr Biol
- 407 5:262–264
- 408 Kojima W, Takanashi T, Ishikawa Y (2012c) Vibratory communication in the soil: pupal
- 409 signals deter larval intrusion in a group-living beetle *Trypoxylus dichotoma*. Behav

- 410 Ecol Sociobiol 66:171–179
- 411 Kon M, Oe A, Numata H, Hidaka T (1988) Comparison of the mating behavior between
- 412 two sympatric species *Nezara antennata* and *N. viridula* (Heteroptera: Pentatomidae)
- 413 with special reference to sound emission. J Ethol 6:91–98.
- 414 Koczor S, Čokl A (2015) Percussion signals of Lygus rugulipennis Poppius
- 415 (Heteroptera: Miridae). Cent Eur J Biol 9:543–549
- 416 Lazzari C, Manrique G, Schilman P (2006) Vibratory communication in Triatominae
- 417 (Heteroptera: Reduviidae). In: Drosopoulos S, Claridge MF (eds) Insect sounds and
- 418 communication: physiology, behaviour, ecology and evolution, Taylor and Francis,
- 419 London, pp 297–304
- 420 Liao YC, Yang MM (2017) First evidence of vibrational communication in
- 421 Homotomidae (Psylloidea) and comparison of substrate-borne signals of two allied
- 422 species of the genus *Macrohomotoma* Kuwayama. J Insect Behav 30:567–581
- 423 Lighton JRB (1987) Cost of tokking: the energetics of substrate communication in the
- 424 tok-tok beetle, *Psammodes striatus*. J Comp Physiol B 157:11–20
- 425 Lubanga UK, Guédot C, Percy DM, Steinbauer MJ (2014) Semiochemical and
- 426 vibrational cues and signals mediating mate finding and courtship in Psylloidea
- 427 (Hemiptera): a synthesis. Insects 5:577–595

428	Lujo S, Hartman E, Norton K, Pregmon E, Rohde B, Mankin RW (2016) Disrupting
429	mating behavior of Diaphorina citri (Liviidae). J Econ Entomol 109:2373-237
430	Mazzoni V, Presern J, Lucchi A, Virant-Doberlet M (2009) Reproductive strategy of the
431	Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). Bull
432	Entomol Res 99:401–413
433	Michelsen A, Fink F, Gogala M, Traue D (1982) Plants as transmission channels for
434	insect vibrational songs. Behav Ecol Sociobiol 11:269–281
435	Mitomi M, Ichikawa T, Okamoto H (1984) Morphology of the vibration-producing
436	organ in adult rice brown planthopper, Nilaparvata lugens (Stål) (Homoptera:
437	Delphacidae). Appl Entomol Zool 19:407–417
438	Mizutani N (2006) Pheromones of male stink bugs and their attractiveness to their
439	parasitoids. Jpn J Appl Entomol Zool 50:87–99. (In Japanese with English summary)
440	Mukai H (2016) Parental regulation for hatching plasticity. Jpn J Appl Entomol Zool

- 441 60:67–75 (In Japanese with English summary)
- 442 Mukai H, Hironaka M, Tojo S, Nomakuchi S (2012) Maternal vibration induces
- synchronous hatching in a subsocial burrower bug. Anim Behav 84:1443–1448.
- 444 Mukai H, Hironaka M, Tojo S, Nomakuchi S (2014) Maternal vibration: an important
- 445 cue for embryo hatching in a subsocial shield bug. Plos One 9:e87932.

446	Mukai H, Hironaka M, Tojo S, Nomakuchi S (2018) Maternal hatching synchronization
447	in a subsocial burrower bug mitigates the risk of future sibling cannibalism. Ecol
448	Evol 8:3376–3381
449	Nishino H, Mukai H, Takanashi T (2016) Chordotonal organs in hemipteran insects:
450	unique peripheral structures but conserved central organization revealed by
451	comparative neuroanatomy. Cell Tissue Res 366:549–572
452	Nomakuchi S, Yanagi T, Baba N, Takahira A, Hironaka M, Filippi L (2012)
453	Provisioning call by mothers of a subsocial shield bug. J Zool 288:50–56
454	Numata, H, Kon M, Fujii H, Hidaka T (1989) Sound production in the bean bug,
455	Riptortus clavatus Thunberg (Heteroptera: Alydidae). Appl Entomol Zool 24:169-
456	173
457	Percy DM, Taylor GS, Kennedy M (2006) Psyllid communication: Acoustic diversity,
458	mate recognition and phylogenetic signal. Invertebr Syst 20:431-445
459	Polajnar J, Eriksson A, Lucchi A, Anfora G, Virant-Doberlet M, Mazzoni, V (2015)
460	Manipulating behaviour with substrate-borne vibrations—potential for insect pest
461	control. Pest Manag Sci 71:15–23
462	Polajnar J, Eriksson A, Virant-Doberlet M, Mazzoni V (2016a) Mating disruption of a
463	grapevine pest using mechanical vibrations: from laboratory to the field. J Pest Sci

- 464 89:909–921
- 465 Polajnar J, Maistrello L, Bertarella A, Mazzoni V (2016b) Vibrational communication
- 466 of the brown marmorated stink bug (Halyomorpha halys). Physiol Entomol,
- 467 41:249–259
- 468 Sakakibara M (2016) Introduction to true bug biology. Ann Rept Plant Prot North
- 469 Japan 67:14–23 (In Japanese)
- 470 Schilman PE, Manrique G, Lazzari CR (2001) Comparison of disturbance stridulation
- in five species of triatominae bugs. Acta Tropica 79:171–178
- 472 Shimoda M, Honda K (2013) Insect reactions to light and its applications to pest
- 473 management. Appl Entomol Zool 48:413–421
- 474 Söderberg O, Sozinov A, Lindroos VK (2005) Giant magnetostrictive materials In:
- 475 Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S,
- 476 Veyssière P (eds) Encyclopedia of materials: science and technology, Elsevier,
- 477 Amsterdam, pp 1–3
- 478 Stölting H, Moore TE, Lakes-Harlan R (2002) Substrate vibrations during acoustic
- 479 signalling in the cicada *Okanagana rimosa*. J Insect Sci 2:1–7
- 480 Takanashi T, Fukaya M, Nakamuta K, Skals N, Nishino H (2016) Substrate vibrations
- 481 mediate behavioral responses via femoral chordotonal organs in a cerambycid

482	beetle. Zool Lett 2:18

483	Tishechkin DY (2003) Vibrational communication in Cercopoidea and Fulgoroidea
484	(Homoptera: Cicadina) with notes on classification of higher taxa. Russ Entomol J
485	12:129–181
486	Tishechkin DY (2008) On the similarity of temporal pattern of vibrational calling
487	signals in different species of Fulgoroidea (Homoptera: Auchenorrhyncha). Russ
488	Entomol J 17:349–357
489	Tishechkin DY (2016) New data on vibrational calling signals of Fulgoroidea
490	(Homoptera: Auchenorrhyncha) from the Asian part of Palaearctic with new records
491	of three species of Cixiidae. Russ Entomol J 25:307–322
492	Travassos MA, Pierce NE (2000) Acoustics, context and function of vibrational
493	signalling in a lycaenid butterfly-ant mutualism Anim Behav 60:13–26
494	Tsubaki R, Hosoda N, Kitajima H, Takanashi T (2014) Substrate-borne vibrations
495	induce behavioral responses of a leaf-dwelling cerambycid Paraglenea fortunei.
496	Zool Sci 31:789–794
497	Virant-Doberlet M, Čokl A (2004) Vibrational communication in insects. Neotrop

498 Entomol 33:121–134

499	Virant-Doberlet M, Žežlina I (2014) Vibrational communication of Metcalfa pruinosa
500	(Hemiptera: Fulgoroidea: Flatidae). Ann Entomol Soc Am 100:73-82
501	Wang Q (2017) Cerambycidae of the world: biology and pest management. CRC Press,
502	Boca Raton
503	Wenninger EJ, Hall DG, Mankin RW (2009) Vibrational communication between the
504	sexes in Diaphorina citri (Hemiptera: Psyllidae). Ann Entomol Soc Am 102:547-
505	555
506	Wessel A (2006) Stridulation in the Coleoptera—an overview. In: Drosopoulos S,
507	Claridge MF (eds) Insect sounds and communication: physiology, behaviour,
508	ecology and evolution, Taylor and Francis, London, pp 397–404

Table 1 Vibrational communications and interactions in Hemiptera. Families reviewed

511 by Virant-Doberlet and Čokl (2004) are included

Family	Species	Intra-species communication	Inter-species interaction	References
Heteroptera				
Alydidae	Riptortus	male courtship,		Numata et al. 1989
	pedestris	communication		
		between male and		
		female		
Coreidae	Coreus	courtship		Gogala 1990
	marginartus			
Cydnidae	Adomerus	male copulatory		Gogala 1984;
	rotundus,	attempts, parent-		Mukai et al. 2012,
	Tritomegas	embryo		2018
	bicolor	communication		
		(synchronous		
		hatching)		
Miridae	Lygus	courtship		Koczor and Čokl
	rugulipennis			2015
Parastrachiidae	Parastrachia	parent-		Mukai et al. 2014;
	japonensis	embryo/offspring		Nomakuchi et al.
		communication		2012
		(synchronous		
		hatching,		
		provisioning call)		
Pentatomidae	Halyomorpha	male courtship,		Čokl et al. 1978,
	halys, Nezara	communication		1999, 2000; Endo
	viridula,	between male and		and Numata 2017;
	Nezara	female, embryo		Endo et al. 2018;
	antennata	interaction		Kon et al. 1988;
		(synchronous		Polajnar et al.
		hatching)		2016b
Reduviidae	Rhodnius	male copulatory	defense	Čokl and

	prolixus, Triatoma infestance	attempts	against predators or disturbance, detection of food	Virant-Doberlet 2003; Lazzari et al. 2006; Schilman et al. 2001
Auchenorrhy ncha				
Aphrophoridae	Aphrophora alni	calling, male territorial and rivalry signals		Tishechkin 2003; Virant-Doberlet and Čokl 2004
Caliscelidae	Acromega scurrilis, Peltonotellus turgidus	calling		Tishechkin 2003, 2016
Cercopidae	Cercopis vulnerata	calling, territorial signals		Tishechkin 2003
Cicadellidae	Scaphoideus titanus	mate location, disturbance of rival males		Mazzoni et al. 2009
Cicadidae	Cicada orni, Okanagana rimosa	mate location (vibrational component of air-borne calling signal)		Stölting et al. 2002; Virant-Doberlet and Čokl 2004
Cixiidae	Celebenna thomarosa, Cixius nervosus	mating behavior		Hoch et al. 2011; Tishechkin 2003, 2008
Delphacidae	Laodelphax striatellaus, Nilaparvata lugens, Sogatella furcifera	communication between males and females		Ichikawa 1976; Ichikawa and Ishii 1974; Tishechkin 2008
Derbidae	Cedusa	calling		Tishechkin 2008

	sarmatica			
Dictyopharidae	Dictyophara	mating behavior,		Tishechkin 2003,
	pannonica	calling		2016
Flatidae	Metcalfa	mating behavior		Virant-Doberlet
	pruinosa			and Žežlina 2014
Issidae	Alloscelis	calling		Tishechkin 2003,
	vittifrons,			2008
	Scorlupella			
	discolor			
Machaerotidae	Taichorina	calling		Tishechkin 2003
	geisha			
Meenoplidae	Eponisiella	calling		Tishechkin 2016
Ĩ	paludicola			
Membracidae	Unbonia	mate location,	defense	Cocroft 1996;
	crassicornis	mating	against	Cocroft and
			predators	Rodríguez 2005
Tettigarctidae	Tettigarcta	courtship		Claridge et al. 1999
	crinita			
Tropiduchidae	Trypetimorpha	calling, competition		Tishechkin 2003
	occidentalis	between males		

Sternorrhync

ha				
Aleyrodidae	Aleurothrixus floccosus, Bemisia tabaci, Siphoninus phillyreae, Trialeurodes vaporariorum	communication between males and females		Kanmiya 1996, 2006; Kanmiya and Sonobe 2002
Aphalaridae	Aphalara affinis	mate finding and courtship		Lubanga et al. 2014
Aphididae	Aphis nerii, Toxoptera oadiiiae, Uroleucon hypochoeridis		defense against predators	Gish et al. 2012; Hartbauer 2010
Carsidaridae	Protyora sterculiae	mate finding and courtship		Lubanga et al. 2014
Liviidae	Diaphorina citri	communication between males and females		Lubanga et al. 2014; Lujo et al. 2016; Wenninger et al. 2009
Psyllidae	Cacopylla pyri, Macrohomoto ma gladiata	mate finding and courtship		Eben et al. 2014; Liao and Yang 2017
Triozidae	Aacanthocnem a dobsoni, Schedotrioza apicobystra	mate finding and courtship		Percy et al. 2006

515 **Table 2** Vibrational communication and interactions in Coleoptera. Proposed

516 mechanisms for vibrational generation and responses to vibration are shown in

517 parentheses.

Family	Species	Intra-species communication	Inter-species interaction	References
Anobiidae	Xestobium	male and female		Goulson et al.
	rufovillosum	tapping		1994
		(orientation)		
Tenebrionidae	Onymacris	male tapping	food movement by	Hanrahan and
	plana plana,	(orientation)	wind (orientation)	Kirchner 1994;
	Psammodes			Kiyotake et al.
	striatus,			2014; Lighton
	Tribolium			1987
	castaneum			
Chrysomelidae	Callosobruchus	larval feeding	predator movement	Acheampong
	maculatus,	(oviposition)	(tonic immobility)	and Mitchell
	Leptinotarsa			1997; Guedes
	decemlineata			and Yack 2016
Cerambycidae	Hylotrupes	male and female	predator movement	Breidbach 1986;
	bajulus,	movement	(startle, freezing)	Takanashi et al.
	Monochamus	(startle,		2016; Tsubaki et
	alternatus,	freezing)		al. 2014
	Paraglenea			
	fortunei			
Scarabaeidae	Trypoxylus	pupal tapping	predator movement	Kojima et al.
	dichotomus	(freezing)	(freezing)	2012a, b, c
Nitidulidae	Phenolia		predator	Kishi and
	(Lasiodites)		movement? (tonic	Takanashi 2019
	picta		immobility)	
Curculionidae	Dendroctonus	male stridulation		Fleming et al.
	ponderosae	(mating?)		2013

519 Figure legends

521	Fig. 1 Leg chordotonal organs in <i>Monochamus alternatus</i> (a – c) and <i>Plautia stali</i> (d – f).
522	a Photograph of <i>M. alternatus</i> adult. b Diagram indicating the locations of femoral
523	chordotonal organ (FCO): sensory neurons (scoloparium) (red arrow) and cuticular
524	apodeme (red line) in prothoracic femur are shown. c Fluorescent retrograde labeling of
525	FCO scoloparium viewed posteriorly. d P. stali adult. e FCO scoloparium (red arrow) in
526	prothoracic femur and subgenual organ (red arrowhead) in prothoracic tibia are shown.
527	f Fluorescent retrograde labeling of FCO scoloparium viewed anteriorly. Scale bars = 4
528	mm (a , d), 500 μ m (b , e), 50 μ m (c , f). c and f are reproduced from the work of
529	Takanashi et al. (2016) and Nishino et al. (2016), respectively, with permission of the
530	publishers. e Courtesy of H. Nishino (redrawn from Nishino et al. 2016).
531	
532	Fig. 2 Thresholds of behavioral responses to vibrations in Monochamus alternatus and
533	Paraglenea fortunei. Startle responses from a standstill (solid lines) in both species and
534	freezing response during walk in <i>P. fortunei (dashed line)</i> are indicated. Adapted from
535	the work of Takanashi et al. (2016) and Tsubaki et al. (2014).
536	

- 537 **Fig. 3** A vibration exciter made by using giant magnetostrictive materials, which
- 538 generates vibration to induce behavioral responses from insects on a tree. The exciter is
- 539 attached horizontally to the tree with black bands. Scale bar = 50 mm.