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Highlights: 
 
We examined Cs uptake by rice with varying water management in fields in 2012–2014.  
 
Long flooding treatment enhanced 137Cs and 133Cs uptakes by rice plant. 
 
The successive K fertilization brought cumulative effect on Cs uptake of rice plant. 
 
Uptakes of 137Cs and 133Cs by rice became correlated over the elapsed year. 
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Abstract 1 

Cesium-137 derived from the Tokyo Electric Power Company’s Fukushima Dai-ichi 2 

Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in 3 

Eastern Japan. Previous studies before the accident have indicated that flooding enhances 4 

radiocesium uptake in rice fields. We investigated the influence of water management in 5 

combination with fertilizers on 137Cs concentrations in rice plants at two fields in southern 6 

Ibaraki Prefecture. Stable Cs (133Cs) in the plants was also determined as an analogue for 7 

predicting 137Cs behavior after long-term aging of soil 137Cs. The experimental periods 8 

comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields 9 

were divided into three water management sections: a long-flooding section without 10 

midsummer drainage, and medial-flooding, and short-flooding sections with one- or 11 

two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six 12 

or four types of fertilizer subsections (most differing only in potassium application) were 13 

nested in each water management section. Generally, the long-flooding treatment led to higher 14 

137Cs and 133Cs concentrations in both straw and brown rice than medial- and short-flooding 15 

treatments, although there were some notable exceptions in the first experimental year at each 16 

site. Effects of differing potassium fertilizer treatments were cumulative; the effects on 137Cs 17 

and 133Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these 18 

concentrations were highest where potassium fertilizer had been absent and lowest where 19 

basal dressings of K had been tripled. The relationship between 137Cs and 133Cs in rice plants 20 

was not correlative in the first experimental year at each site, but correlation became evident 21 

in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer 22 

drainage and/or delaying drainage during the grain-filling period enhances uptake of both 23 

137Cs and 133Cs. 24 

 25 
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 27 

1. Introduction 28 

The accident at the Tokyo Electric Power Company’s Fukushima Dai-ichi Nuclear Power 29 

Plant (FDNPP), triggered by the Great East Japan Earthquake and subsequent Tsunami in 30 

March 2011, widely contaminated the agricultural environment in the southern Tohoku and 31 

northern Kanto districts with radionuclides. Cesium-137 (137Cs) has a long half-life of 30 y, 32 

and its transfer to agricultural products is a long-lasting problem that demands 33 

countermeasures. The optimization of potassium (K) fertilizer application is an effective 34 

means to accomplish this (Kato et al., 2015; Saito et al., 2015) because K competes with 137Cs 35 

in the transfer process from soil solution to plant body (Shaw and Bell, 1991; Smolders et al., 36 

1997). 37 

Rice (Oryza sativa) cropping in flooded soil is the representative agricultural system in 38 

Japan. Some previous studies before the FDNPP accident indicate that soil flooding enhances 39 

radiocesium uptake by the rice plant. Tensho et al. (1961) demonstrated using pot-culture 40 

experiments with artificial addition of radiocesium that the uptake of radiocesium by rice 41 

plants is much greater from flooded soil than from unflooded soil. They suggested that 42 

ammonium (NH4
+) as the main form of inorganic nitrogen in flooded soil might enhance 43 

availability of radiocesium to plants because NH4
+ could exchange with radiocesium 44 

selectively adsorbed in soil. Pot-culture experiments by D’Souza and Mistry (1980) generated 45 

results similar to those of Tensho et al. (1961). Verfaillie et al. (1967) demonstrated in an 46 

actual paddy field in Northern Italy in 1964 that preventing flooding decreased 137Cs 47 

concentration in rice grain. Although these studies compared the effects of flooding and 48 

upland cultivation practices on radiocesium uptake by rice plants, it remains unknown 49 

whether variations in the flooding period within a practical range for paddy rice cropping 50 
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affect 137Cs uptake by rice plants. Smolders and Tsukada (2011) suggested that water 51 

management systems that suppress NH4
+ concentration might be a potential countermeasure 52 

against 137Cs transfer to rice crops, and advocated factorial experiments focused on water 53 

management and nitrogen (N) fertilization. 54 

We conducted field experiments in paddy crops to investigate the influence of water 55 

management (flooding period) on 137Cs concentration in rice plants. Additionally, the effects 56 

of different K application treatments were investigated. Stable cesium-133 (133Cs) is regarded 57 

as a useful analogue for long-term assessment of 137Cs in agricultural environments, because 58 

the fate of radionuclides in the environment follows the behavior of their stable isotopes 59 

(Tsukada et al., 2002; Uchida and Tagami, 2007). In this study, 133Cs in rice plants was also 60 

determined so the influence of water management and fertilizer treatment on 137Cs uptake 61 

long after the fallout event might be predicted. 62 

 63 

2. Materials and Methods 64 

 65 

2.1. Experimental Fields 66 

The experimental area comprised two paddy fields in southern Ibaraki Prefecture. Site YWR 67 

is located in the alluvial plain of the Kokaigawa River in Tsukubamirai City. Site KND is 68 

located on the Hitachi tableland in Tsukuba City. According to the soil classification system in 69 

Japan (Obara et al., 2011) or the World Reference Base for Soil Resources (International 70 

Union of Soil Sciences Working Group WRB, 2014) respectively, YWR soil is Gray Lowland 71 

soil or Gleyic Fluvisol, and KND soil is Upland Reformed soil or Thaptandic Regosol 72 

(Transportic). These fields had no history of deep tillage after the FDNPP accident, therefore 73 

137Cs was mainly distributed within topsoil. 74 

In previous rice cropping before this experiment in each field, water management had been 75 
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spatially uniform for more than a decade. A common practice in these areas, called 76 

“midsummer drainage,” is aimed at enhancing root growth and reducing the number of 77 

unproductive tillers of rice plants. It also promotes subsurface drainage through formation of 78 

drying cracks in the soil and increases the soil’s bearing capacity for machinery operation 79 

(Inoue and Tokunaga, 1995). In previous rice cropping at YWR, field flooding was started and 80 

topsoil was puddled in early May, a few days before transplanting, as was customary for the 81 

water management system. Basal-dressing fertilizer had been applied before flooding. In late 82 

June, ponding water was temporarily drained for 2–3 weeks as midsummer drainage. Field 83 

flooding ended in early September, a week before harvest. As was customary at KND, field 84 

flooding was started and topsoil was puddled in early May. A few days later, basal-dressing 85 

fertilizer was applied to the flooded soil. Rice seedlings were transplanted a few days later 86 

thereafter. The midsummer drainage was conducted for a week from early July. During 87 

drainage period in KND, drainpipe buried in the soil at a depth of 90 cm was opened to 88 

promote underdrainage. Field flooding ended at the end of August, two weeks before harvest. 89 

(Other details on field management before this experiment, such as fertilizer application, are 90 

summarized in Supplementary Tables.) 91 

The experimental periods comprised 3 y from 2012 at the YWR field, and 2 y from 2013 at 92 

the KND field. The cultivar “Koshihikari” was transplanted in May and raised until harvest in 93 

September. The schedule of paddy field management during the experiment is shown in Table 94 

1. During the season, air temperature ranged from 4.9 to 36.8°C (mean temperature of 95 

23.4°C) and precipitation was recorded as 580, 380 and 760 mm in 2012, 2013 and 2014, 96 

respectively at the nearest meteorological observatory (Japan Meteorological Agency, 2015). 97 

 98 

2.2. Experimental design 99 

The experimental designs of the two fields are shown in Fig. 1. Each field was divided into 100 
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three sections for different water management treatments using two plastic corrugated sheets 101 

(Nami-ita in Japanese). Each section was identified by the three type of water management as 102 

follows: A long-flooding (LF) section, which was flooded from before transplanting to the end 103 

of August or early September; a medial-flooding (MF) section, which was drained in 104 

midsummer for 7 or 8 d and 7–12 d earlier at the end of flooding than the LF section; and a 105 

short-flooding (SF) section, which was drained in midsummer for 14–16 d and 15–20 d 106 

earlier at the end of flooding than the LF section. In 2014, however, midsummer drainage for 107 

the MF and SF sections was increased to 20 d because of prolonged rainy weather. At KND, 108 

only one water outlet existed for surface drainage; therefore, pumps were used to discharge 109 

standing water at that site. 110 

Each water management section was divided into six (at YWR) or four (at KND) 111 

subsections for different fertilizer treatments. Control subsections (CR) at each site received 112 

3.0 g m−2 of N as ammonium sulfate ((NH4)2SO4), 2.6 g m−2 of P as calcium superphosphate 113 

(mainly Ca(H2PO4)2 ·H2O), and 5.0 g m−2 of K as potassium chloride (KCl) as basal dressing, 114 

and 3.0 g m−2 of N as (NH4)2SO4 and 2.5 g m−2 of K as KCl as top-dressing in late July. Three 115 

types of subsections at each site were defined according to the KCl application strategy; no K 116 

fertilizer application (0K: no K), triple basal dressing without top-dressing (3BK: totally 15 g 117 

m−2 K), and triple top-dressing without basal dressing (3TK: totally 7.5 g K m−2 K). Of the 118 

remaining subsections at YWR, one type received 7.5 g m−2 of K as potassium silicate 119 

(K2SiO3), which is a release fertilizer, as basal dressing instead of KCl (KS). The other type 120 

differs from the control subsections in having had no top-dressing of KCl (0TK) in 2012 and 121 

increased N fertilizer application in 2013 and 2014 (IN: 4 g m−2 of N as (NH4)2SO4 and the 122 

same amount of N as controlled-release coated urea, LPSS100) as basal dressing. 123 

The field position of each treatment-defined subsection was not changed during the 124 

experimental years in order to observe the cumulative effect of field management, especially 125 
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fertilizer application, over the years. 126 

 127 

2.3. Sample collection, and radiometric and chemical analysis 128 

In mid-September, the aerial parts of matured rice were harvested at about 2 cm above 129 

ground from a 5.0 or 6.5 m2 area of each subsection. A sample of the underlying topsoil, 130 

which was 17 cm thick on average, was also collected from a harvest area of each subsection 131 

with a shovel or a root auger (4 cm diameter; DIK-102A, Daiki Rika Kogyo Co., Ltd., Japan). 132 

Brown rice samples were obtained after air-drying, husking, and sieving through 1.8 mm 133 

sieves. Straw samples were dried at 70 °C, brushed to remove surface tissue stained with soil 134 

remnants, and milled. Soil samples were air-dried and sieved through 2.0 mm sieves. 135 

Concentrations of 137Cs in straw, brown rice, and soil samples were determined with 136 

germanium (Ge) gamma-ray detectors (GEM55P, GEM20-70, SEIKO EG&G, Co., Ltd., 137 

Japan; GC2020, GC2520, GC4020-7500SL-2002SCL, Canberra, USA) using 2.0 L of plant 138 

samples or 100 mL of soil samples. Before measurement, each sample was mixed to 139 

homogenize the material and was then uniformly packed into a plastic container. The counting 140 

efficiency of the Ge gamma-ray detectors was calibrated using gamma-ray reference source 141 

(MX033MR and MX033U8PP, Japan Radioisotope Association, Tokyo, Japan). The decay 142 

corrections were made to the harvest day in each year. 143 

To measure 133Cs and K concentration in brown rice and straw, 100 mg of milled sample 144 

was digested in duplicate with 70% nitric acid on the hot plate at 105°C. The digestion 145 

solution was analyzed using inductively coupled plasma mass spectrometry (Agilent 7700x, 146 

Agilent Technologies, Japan) and atomic absorption spectrometry (iCE 3300, Thermo Fisher 147 

Scientific K.K., Japan) to measure 133Cs and K concentrations, respectively. The standards for 148 

calibration were prepared using multi-element calibration standard 3 (containing 10.0 mg L−1 149 

of 133Cs; PerkinElmer, Inc., USA) and KCl powder (>99.5%; Wako Pure Chemical Industries, 150 
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Ltd., Japan). The average standard error between duplicates was 3% and 1% of the analytical 151 

value for 133Cs and K analysis, respectively. 152 

To estimate exchangeable K, soil samples were shaken with 1 mol L−1 ammonium acetate 153 

solution at pH 7.0 for 1 h at a solution/soil ratio of 10 mL g−1. The K concentration of the 154 

supernatant solution after centrifugation and filtration was determined by atomic absorption 155 

spectrometry. The extraction was duplicated, and the average standard error between 156 

duplicates was determined to be 1% of the analytical value. 157 

To investigate the influence of water management and increasing N fertilizer application on 158 

soil NH4
+ concentration, the exchangeable NH4

+ content of soils in the CR and IN subsections 159 

was determined before and during cultivation in 2014 at the YWR field. Soil cores (3 cm 160 

diameter and 10 cm depth) were collected five times in triplicate: the days before 161 

transplanting (15 May), before midsummer drainage (23 June), after midsummer drainage in 162 

the MF and SF sections (16 July), after heading stage (6 August), and after drainage in the LF 163 

section (5 September). Each wet core sample was stirred to homogenize, and a part of it was 164 

used for 1-h extraction with 2 mol L−1 KCl solution (solution/soil ratio of 10 mL g−1) within 165 

the sampling day. After centrifugation and filtration, the NH4
+ concentration of the 166 

supernatant solution was determined using an Autoanalyzer (QuAAtro 2-HR, BL-TEC, Japan). 167 

The remaining wet samples were used to estimate exchangeable K contents during cultivation. 168 

Similar to KCl extractions, 1-h extractions with 1 mol L−1 ammonium acetate solution were 169 

conducted. The K concentration of the supernatant solutions was determined using atomic 170 

absorption spectrometry. 171 

The mass of dried plant material or soil is used in expression of all measured quantities 172 

(plant yields, amounts of chemical species). 173 

 174 

2.4. Statistical analysis 175 
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The Grubbs’ test was applied to identify outliers in datasets for each field and year using R 176 

software version 3.1.1 (The R Project for Statistical Computing, Vienna, Austria. URL 177 

http://www.r-project.org). A value of brown rice 137Cs for subsection 3TK of the SF section at 178 

KND in 2013 was regarded as an outlier at p < 0.001, and was thereby excluded from 179 

analyses. 180 

The data of four subsections (CR, 0K, 3BK, and 3TK) for 2013–2014, which have 181 

counterparts in all sections of both fields, were subjected to mixed model analysis of variance 182 

(ANOVA) with the SAS Add-In for Microsoft office version 6.1 M1 (SAS Institute Inc., 183 

USA). This dataset is structured as a split-plot design with site as the block, water 184 

management as the primary factor, fertilizer as the secondary factor, and experimental year as 185 

the tertiary factor. In this paper, the statistical term “significant” refers to p < 0.050 and 186 

“significant tendency” to 0.050 < p < 0.100. When the effects of water management or 187 

fertilizer were significant without any interaction in ANOVA, Tukey’s post hoc multiple 188 

comparison test was performed to determine significant difference among sections or 189 

subsections. When significant interactions between experimental year and water management 190 

or fertilizer were revealed by ANOVA, a post-hoc Tukey’s test was performed separately for 191 

both 2013 and 2014 datasets at an adjusted significance level (p < 0.050 / 2 = 0.025). 192 

Correlations between 137Cs and 133Cs concentrations in straw and brown rice were calculated 193 

by linear regression using Microsoft Excel 2013. 194 

 195 

3. Results 196 

The soil 137Cs concentrations were closely similar in the two fields (Table 2). For each field 197 

in each year, the average soil 137Cs concentration for each type of water management or 198 

fertilizer treatment ranged within a narrow interval (for example, 153–177 Bq kg−1 at YWR 199 

and 152–185 Bq kg−1 at KND in 2014). The ANOVA results for the 2013–2014 dataset 200 
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revealed no significant differences in 137Cs among soils that experienced different water 201 

management or fertilizer treatment, but there were significant differences for the different 202 

experimental years. The values were lower in 2013 than in other years, which could be 203 

attributed to a sampling error caused by using a different tool in 2013 (root auger) than in the 204 

other years (shovels). When root augers were vertically inserted into the soil during sampling, 205 

the penetration resistance appeared to be lower than when a shovel was used, indicating that 206 

the sampling with the auger may have been deeper. This could have allowed accidental 207 

inclusion of the less-contaminated soil from the plow sole in the topsoil samples. 208 

The exchangeable K content after harvest was higher at YWR than at KND (Table 2). The 209 

values for 0K and 3BK were the lowest and the highest, respectively, among the values for 210 

different fertilizer treatments, corresponding to their ranking in respect to K application 211 

amounts. The average exchangeable K content for 3BK increased annually in each field, in 212 

contrast to stable or decreasing values for 0K, so the differences widened over years. Water 213 

management sections exhibited small exchangeable K differences at KND. At YWR, the 214 

difference was negligible in 2012, but in the subsequent years, the exchangeable K content 215 

was highest in the soil that had experienced longer drainage treatment (SF). The ANOVA 216 

results for the 2013–2014 dataset revealed significant fixed effects of fertilizer and 217 

experimental year and their interaction (data not shown). 218 

The annual mean values of yields of straw and brown rice varied slightly across the different 219 

kinds of water management or fertilizer treatments (Table 3). Although these yields for LF at 220 

YWR were relatively low in 2014, ANOVA for the 2013–2014 dataset revealed no significant 221 

fixed effects for yields of both materials (data not shown). Straw yields were lower in the first 222 

experimental year than in the subsequent year(s) in each field. 223 

The K concentration in straw and brown rice varied more between experimental years than 224 

between experimental treatments (Table 4). Water management practices and fertilizer 225 
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treatments did not cause the value to vary by more than 10% from the grand mean in each 226 

year at each field. The ANOVA results for the 2013–2014 dataset revealed a significant 227 

difference only between experimental years (data not shown). 228 

The 137Cs and 133Cs concentrations found in straw and brown rice are presented in Fig. 2. 229 

The ANOVA results for the 2013–2014 dataset are summarized in Table 5. 230 

Concentration of 137Cs in straw was higher for LF than for MF and SF in each case, except 231 

for 0K at KND in 2013 (Fig. 2a). The annual mean values for each water management are 232 

shown in Fig. 2 together with the annual grand mean (white bars in Fig. 2). Compared to MF, 233 

the annual mean values for LF were higher by 28%–52%, while those of SF were almost the 234 

same, except in each field’s first experimental year when annual mean values for SF were 235 

lower by 12% (YWR) and 32% (KND). Among the different fertilizer treatments, the mean 236 

values in 2014 were highest for 0K at both fields and lowest for in 3BK at KND. The values 237 

in each section and subsection mostly decreased from year to year. The ANOVA results for the 238 

2013–2014 dataset showed significant influences of water management and year without any 239 

interaction (Table 5). The Tukey’s post hoc test indicated that the differences between LF and 240 

the other two kinds of water management were significant. 241 

Concentration of 137Cs in brown rice was also higher for LF than for MF and SF in most 242 

cases at YWR and in most 2014 cases at KND (Fig. 2b). At YWR, the annual mean values for 243 

LF were higher by 33%–57% than those for MF. The mean value for SF was lower than that 244 

for MF by 29% in 2012, but in 2013 and 2014 the mean values for SF and MF were almost 245 

equal. At KND in 2013, the annual mean value for brown rice 137Cs was higher for SF than 246 

for LF and MF, contrary to the straw 137Cs results. Among the different fertilizer treatments, 247 

the mean values in 2014 were highest for 0K at both fields and lowest for 3BK at KND, in 248 

accordance with the straw results. The annual grand mean (white bars in Fig. 2) for each field 249 

decreased from the first experimental year to the second year. The ANOVA results for the 250 
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2013–2014 dataset did not show significant influence of water management but revealed 251 

interactions of water management with year (fixed effect) and with field (random effect) 252 

(Table 5). It also showed significance or significant tendency (p < 0.10) for fertilizer, year, 253 

and their interaction. The separate Tukey’s post hoc test detected no significant difference in 254 

2013, but it showed that 137Cs in brown rice was significantly higher for 0K than for three 255 

other fertilizer treatments in 2014. 256 

Concentration of 133Cs in straw was higher for LF than for MF and SF in most cases after 257 

2012 (Fig. 2c). At YWR, the differences in annual mean values for the different types of water 258 

management were negligible in 2012 but increased from year to year. Among the different 259 

fertilizer treatments, the values in 2014 were highest for 0K and lowest for 3BK at both fields. 260 

The ANOVA results for the 2013–2014 dataset showed significant tendencies for the effects 261 

of water management and fertilizer along with a significant interaction between fertilizer and 262 

year (Table 5). The separate Tukey’s post hoc test for each year detected no significant 263 

difference for 2013, but it showed that 133Cs concentration in straw was significantly lower for 264 

3BK than for 0K and 3TK in 2014. 265 

Concentration of 133Cs in brown rice exhibited trends similar to 133Cs concentration in straw 266 

(Fig. 2d). Additionally, the annual grand mean for each field was higher for 2014 than for 267 

earlier years. The increase from 2013 to 2014 is most evident in LF among water management 268 

treatments. At KND in 2013, the annual mean values were higher in LF than in MF and SF, 269 

which was consistent with both 137Cs and 133Cs in straw but not with 137Cs in brown rice. The 270 

ANOVA results for the 2013–2014 dataset showed significant influence of water management, 271 

fertilizer, and year (Table 5). However, it is not feasible to follow multiple comparison tests 272 

for any factor because there was also significant interaction within each pair of these three 273 

factors. 274 

The relationship between 133Cs and 137Cs concentrations in each plant component (straw and 275 
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brown rice) are exhibited in Fig. 3, separately for each field and each year. There was no 276 

significant correlation in the first experimental year for each site but positive correlation was 277 

observed in the subsequent year(s). 278 

The exchangeable NH4
+ and K contents of soil from selected subsections before and during 279 

rice cultivation in 2014 at YWR are exhibited in Fig. 4. Exchangeable NH4
+ content was 280 

higher for IN than for CR on the day before transplanting (Fig. 4a). After that, the 281 

exchangeable NH4
+ content became consistently low, regardless of the difference in 282 

application amount of N fertilizer. Midsummer drainage in the MF and SF sections did not 283 

change the values. During the grain-filling period, the NH4
+ content increased with no clearly 284 

evident difference between different types of water management or different fertilizer 285 

treatments. Exchangeable K content decreased from before transplanting to after the heading 286 

stage (Fig. 4b). After the end of flooding, exchangeable K values increased in SF sections. 287 

 288 

4. Discussion 289 

4.1. Influence of water management 290 

Except the case of brown rice in 2013 at KND, the 137Cs concentrations of straw and brown 291 

rice showed highly significant correlation (YWR in 2012–2014, r=0.786, p<0.001; KND in 292 

2014, r=0.900, p<0.001) and average 137Cs concentrations for water management sections 293 

were ordered in the same way in the sense that the highest 137Cs concentrations were in the LF 294 

sections (Fig. 2a, b). The average 133Cs concentrations of straw and brown rice for the water 295 

management sections were in the same order as the average 137Cs concentrations (highest in 296 

the LF sections) except at YWR in 2012 (Fig. 2c, d). In these field experiments, the soil 137Cs 297 

concentrations of the water management sections in the two fields were in about the same 298 

range (Table 2). The exchangeable K content was also closely similar among the sections of 299 

each field at the end of the first experimental year. Therefore, the relatively high 137Cs 300 
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concentrations in rice plants in the LF sections are not attributable to spatial differences of soil 301 

quality in terms of either 137Cs concentration or K fertility. Variations of plant yields were 302 

small and insignificant (Table 3) indicating negligible effect of carbohydrate dilution. These 303 

results indicate as a whole that the enhanced rice plant Cs (both 137Cs and 133Cs) 304 

concentrations in LF sections (LF effect) was the outcome of the long-flooding treatment 305 

itself. The interaction between water management and fertilizer was not significant except for 306 

brown rice 133Cs (Table 5), and the LF effect was consistent across the different fertilizer 307 

treatments in most cases (for all cases in 2014, Fig. 2). Thus the LF treatment seems to have 308 

been influential regardless of fertilizer management and field. On the other hand, the effect of 309 

doubling the drainage period (i.e., the difference between the treatments in SF and MF) was 310 

not significant. 311 

Possible causes of the LF effect on Cs uptake are discussed hereafter. Tensho et al. (1961) 312 

suggested that NH4
+ exchanges with radiocesium selectively absorbed in soil particles to 313 

enhance its availability to the plant under submerged conditions. Ammonium also has been 314 

reported to play an important role in radiocesium release from submerged sediments (Comans 315 

et al., 1989; Evans et al., 1983); also, liberal application of NH4
+ enhances plant uptake of 316 

radiocesium (Jackson et al., 1965; Lasat et al., 1997; Ohmori et al., 2014; Prister et al., 1992). 317 

It should be investigated whether or not NH4
+ derived from mineralization or a practical 318 

amount of fertilizer does contribute to Cs mobility, and whether oxidation by drainage 319 

treatment could suppress this NH4
+ contribution. In this study, application of 1.3 times more N 320 

to the IN subsections than to the control subsections produced no appreciable difference in Cs 321 

concentration in the plants (Fig. 2). The differences in exchangeable NH4
+ content among 322 

soils that experienced different water management treatments were small in the observation at 323 

YWR in 2014 (Fig. 4). Ammonium is not necessarily considered to be the cause of the LF 324 

effect at this moment. 325 
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Secondarily, the possibility of exogenous 137Cs entry from irrigation water might be 326 

considered. However, Suzuki et al. (2015) found that irrigation with water containing 327 

dissolved 137Cs at a concentration of 0.10 Bq L−1 did not or did only slightly (by less than 328 

20%) increase the 137Cs concentration of brown rice grown in pot culture using soil containing 329 

137Cs at 200 Bq kg−1. Although 137Cs concentrations of irrigation water were not measured in 330 

our experiment, they were assumed to be lower than 0.10 Bq L−1. In the investigation of Tsuji 331 

et al. (2014) in four rivers located in Fukushima Prefecture in 2012 and 2013, dissolved 137Cs 332 

concentrations in river water were less than 0.20 Bq L−1 in the river where deposited 137Cs is 333 

highest, and these were less than 0.05 Bq L−1 in the other three revers. Additionally, the 334 

differences in total duration of flooding among the water management sections were four 335 

weeks or less in this study. Thus the differences of 137Cs inflow load among the water 336 

management sections are considered not to be a main cause of the LF effect. Similar 337 

enhancements of radiocesium uptake by flooding were reported in pot experiments with no 338 

exogenous radiocesium entry (D’Souza and Mistry, 1980; Tensho et al., 1961). 339 

Thirdly, D’Souza and Mistry (1980) suggested that shoot-base absorption of radiocesium in 340 

standing water can be a major means by which flooding increases radiocesium uptake, in 341 

reference to a report by Myttenaere (1972) that absorption of radiocesium by rice plants is 342 

greater through a shoot base dipped in water than through a root dipped in nutrient solution. 343 

However, the nutrient solution in the hydroponic experiment seems different from natural soil 344 

solution in the point of salt concentration. To estimate the realistic contribution of shoot-base 345 

radiocesium absorption to rice plants, the composition of the test solutions (K, NH4
+, 133Cs 346 

etc.) should be modified according to that of soil solution and standing water in the actual 347 

field. 348 

A fourth possibility is that K availability can be changed with longer flooding to influence 349 

Cs uptake. Reductive conditions reportedly decrease K release (Chen et al., 1987; Horikawa 350 
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and Kawaguchi, 1963), and oxidation of paddy soil by drainage decreases K-deficient 351 

symptoms in rice plants (Ogihara, 1960). At YWR in 2014, the exchangeable K content 352 

increased after the end of flooding where drainage had started earlier (Fig. 4b). This increase 353 

may have been caused by soil oxidation and related to lower Cs uptake in the SF section. 354 

Other causes are possible, but no clear mechanism for the LF effect is evident yet. 355 

Results of 133Cs measurements for the different water management treatments at YWR show 356 

a trend not shared by 137Cs results; LF treatment did not change 133Cs concentrations in rice 357 

plants (both straw and brown rice) in 2012 but increased these in later years (Fig. 2c, d). We 358 

propose a two-fold hypothesis to explain the trend specific to 133Cs. First, the discordance in 359 

variation between 133Cs and 137Cs could have been caused by 133Cs uptake from the subsoil. 360 

Unlike 137Cs, 133Cs uptake in rice plants comes from not only topsoil but also subsoil, where 361 

water and nutrient conditions are different from those. If 133Cs uptake in subsoil was 362 

substantial, 133Cs concentration in rice plant would not have reflected LF treatment. Second, 363 

repeated LF treatments might gradually have suppressed vertical growth of rice root into the 364 

subsoil. Consequently, 133Cs uptake would be enhanced by LF treatment in a manner similar 365 

to 137Cs uptake when root activity was predominant in topsoil. Straw samples in the LF 366 

section showed significant correlation between 133Cs and 137Cs concentrations among six 367 

subsections in 2013 (r = 0.905, p < 0.01) and 2014 (r = 0.802, p < 0.05), indicating that the 368 

uptake sources of both 137Cs and 133Cs were the same. In contrast, in the cases of MF and SF, 369 

there are no significant correlation in each year. Midsummer drainage reportedly promotes 370 

vertical growth of rice root (Kawata and Katano, 1977) and nutrient uptake from subsoil 371 

(Kaneda, 1995). In the plow sole and subsoil, rice roots grow along with cracks and tubular 372 

macro-pores (Kaneda, 1995; Kawata et al., 1980). These macro-pores are formed by drying 373 

and previous root activity, whereas they are clogged by clay particles deposited during 374 

puddling (Inoue and Tokunaga, 1995). Therefore, repeatedly skipping midsummer drainage 375 
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should decrease macro-pores in plow soles and subsoil and suppress vertical growth of rice 376 

root. Compared with MF and SF sections, the LF section at YWR had a low yield of rice 377 

plants in 2014 (Table 3), and became lower in exchangeable K contents in topsoil year by year 378 

(Table 2). These results are consistent with the hypothesis that repeated LF treatment 379 

concentrated root activity within topsoil. At KND, the trend specific to 133Cs uptake discussed 380 

above was not obvious. However, the increase in 133Cs concentrations in brown rice grown in 381 

the LF section from 2013 to 2014 (Fig. 2d) can be explained by this hypothesis. 382 

 383 

4.2. Influence of K fertilizer application 384 

The effect of K fertilizer is significant or has a significant tendency for brown rice and straw 385 

133Cs, and there are significant interactions with year in all cases (Table 5). In 2014, plants 386 

under 0K treatments had the highest Cs concentrations in both straw and brown rice of all 387 

fertilizer treatments (Fig. 2), and Tukey’s post-hoc test indicated some significant differences 388 

from other subsections (Table 5). Conversely, the lowest values for Cs concentrations were 389 

commonly observed in plants under the 3BK treatment, especially at KND. However, neither 390 

treatment significantly changed K concentration in the rice plants (Table 4). These results 391 

indicate that K availability was sufficient for rice plant requirements in all subsections, but its 392 

variation within this range affected Cs uptake by rice plant. Increase of the K basal dressing 393 

would more effectively enhance K availability at KND than YWR because the former site was 394 

poorer in exchangeable K (Table 2). However, the order of Cs uptake for different K 395 

application treatments (3BK < other subsections < 0K) was not observed before 2013 even at 396 

KND. The temporally broadening range of exchangeable K content across the subsections 397 

suggests that K application cumulatively affected soil K availability over the years of the 398 

experiment (Table 2). This accumulation would explain the changes in response to K fertilizer 399 

treatments. Although application timing of K fertilizer (i.e., basal dressing or top-dressing) is 400 
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reportedly important to suppress radiocesium concentration in rice plants (Nobori et al., 2014; 401 

Saito et al., 2015), the effect of the 3BK treatment on Cs uptake observed in this study is 402 

mainly attributed to cumulative enhancement of soil K fertility by application of high 403 

amounts of K. 404 

 405 

4.3. Influence of time 406 

Plant 137Cs values were expected to decrease over the years of the experiment along with 407 

aging of soil 137Cs (Rigol et al., 1999; Roig et al., 2007). Accordingly, these decreases were 408 

observed (Fig. 2a, b, Table 5), but the decrease from 2013 to 2014 at YWR was very small. In 409 

this study, however, soil 137Cs aging might not be the only cause of these decreases. The grand 410 

means of exchangeable K content increased by 9% at YWR and by 11% at KND from the first 411 

year to the second year. The increasing K availability in the entire field also might have 412 

contributed to the difference of 137Cs uptake between experimental years. 413 

The 137Cs and 133Cs concentrations in rice plants over the elapsed years became correlated 414 

during the experimental period (Fig. 3). The observation that 137Cs concentrations gradually 415 

began to follow those of 133Cs over time can be explained by the aging of soil 137Cs. As shown 416 

in Fig. 3, however, the variation range of stable 133Cs becomes wider to fit that of 137Cs, 417 

except in the case of straw at KND. The widening variation of 133Cs was caused by the 418 

repetition of water management methods and fertilizer treatments. Repeated LF treatments 419 

increased 133Cs uptake by rice plant, which might be attributed to concentration of root 420 

activity within topsoil (Section 4.1). Repeated K fertilizer treatments cumulatively affected K 421 

availability, and resulted in a significant difference in 133Cs uptake by rice plants between the 422 

0K and 3BK treatments (Section 4.2). Although 133Cs uptake from subsoil might reflect K 423 

availability not in topsoil but in subsoil, repeated K fertilization might promote leaching from 424 

topsoil, and thereby enhance K availability in subsoil. The convergence of 137Cs and 133Cs 425 
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concentrations over the elapsed years can be attributed to both aging of soil 137Cs and the 426 

cumulative effects of repetitive water management practices and fertilizer treatments. 427 

 428 

4.4. Effectiveness of water management and K fertilization treatments in reducing 429 

137Cs transfer to rice 430 

The enhancement of 137Cs uptake by the LF treatment was observed in both of the 431 

experimental fields, which had differing K status, site location, and soil taxa. The similar 432 

enhancement of natural 133Cs concentration in rice plants after 2012 implies that LF treatment 433 

could be influential on 137Cs transfer to rice plants even after long-term aging of soil 137Cs, 434 

but the absence of an LF effect on 133Cs in 2012 needs explanation. That is, the changing 435 

water management from LF to MF could be an effective, long-term method to reduce 137Cs 436 

transfer to rice. On the other hand, extending the drainage period in midsummer and 437 

grain-filling period to more than that of MF appears to be fruitless. In rice cropping systems 438 

in Japan, midsummer drainage is commonly practiced, and the total flooding period is shorter 439 

than that in the LF section of this study. Therefore, changing the practice of LF might be 440 

applicable only in fields where drainage treatment is skipped or imperfectly practiced due to 441 

low water permeability, inflow of mountain runoff, or other reasons. In such fields, efforts to 442 

practice midsummer drainage and/or to terminate flooding earlier in the grain-filling period 443 

could decrease 137Cs transfer to rice. However, the effects of these two practices were not 444 

individually investigated in this study. Additionally, the cause and the extent of generalization 445 

of the phenomenon should be examined in subsequent studies. 446 

Increased K fertilization (3BK) treatment significantly decreased Cs concentration in rice 447 

plants, but the effect was not immediately observed, especially at YWR. Kato et al. (2015) 448 

reports a negative correlation between exchangeable K content after harvest and transfer 449 

factor (the ratio of radiocesium concentration in brown rice to that in soil), but it was not clear 450 
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when exchangeable K content was higher than 3.8 mmol kg−1. In previous experiments to 451 

investigate the effect of K fertilizer on radiocesium uptake by rice plants, exchangeable K 452 

contents in used soil were often low (for example, <1 mmol kg−1, Fujimura et al. (2014) and 453 

Saito et al. (2012)). It is unclear whether K fertilization is effective in reducing Cs uptake by 454 

rice plants in fields where exchangeable K content is moderate or rich. The exchangeable K 455 

content in the first year was, on average, 4.7 mmol kg−1 at YWR and 2.6 mmol kg−1 at KND. 456 

This experiment shows that regular application of high amount of K is effective in reducing 457 

Cs uptake by rice plants, even where exchangeable K content is not low and the first K 458 

fertilization seems to have no effect. 459 

 460 

5. Conclusion 461 

The rice cultivation experiments in two fields in southern Ibaraki Prefecture exhibited the 462 

following results. 463 

1. Cs uptake in rice plants was significantly affected in many cases by water management 464 

treatments; omitting midsummer drainage and/or delaying drainage during the grain filling 465 

period (LF) mostly enhanced Cs concentration. The phenomenon was observed to be 466 

independent of fertilizer application treatment type. 467 

2. High K fertilization over successive years had a cumulative effect on Cs uptake by rice 468 

plants. The difference of K fertilizing was not recognized in plant Cs concentrations in 2012 469 

and 2013 but exhibited a significant influence in 2014. By 2014, the cumulative effect of 470 

applying no K clearly enhanced plant Cs concentrations, while the cumulative effect of 471 

tripling the K basal dressing had the opposite effect, especially in a field with lower K status. 472 

3. The correlation between 137Cs and 133Cs uptakes was insignificant at first and became close 473 

and significant with elapsed years. The convergence between 137Cs and 133Cs is attributed to 474 

the aging of soil 137Cs and the cumulative effects of repeated water management methods and 475 
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fertilizer treatments. 476 

4. Efforts to practice midsummer drainage and/or terminate flooding earlier in the grain-filling 477 

period could be an effective countermeasure to suppress 137Cs transfer to rice plants in fields 478 

where drainage is skipped or imperfectly practiced. The effect would be promising even after 479 

long-term aging of 137Cs. 480 

 481 
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Figure captions 601 

 602 

Figure 1. Field experimental designs. CR, control; 0K, no K fertilizer application; 3BK, triple 603 

basal dressing of KCl; 3TK, triple top-dressing of KCl; KS, K2SiO3 application instead of 604 

KCl; 0TK/IN, no K top-dressing in 2012 and increased N fertilizer application in 2013–2014. 605 

 606 

Figure 2. 137Cs concentrations in straw (a) and brown rice (b) and 133Cs concentrations in 607 

straw (c) and brown rice (d). Fertilizer treatments: CR, control; 0K, no K fertilizer 608 

application; 3BK, triple basal dressing of KCl; 3TK, triple top-dressing of KCl; KS, K2SiO3 609 

application instead of KCl; 0TK, no K top-dressing; IN; increased N fertilizer application. 610 

Gray and white rectangle bars represent the averages between water management treatments 611 

for each fertilizer subsection and overall, respectively. Error bars in (a) and (b) represent 612 

counting errors. The short-flooding, 3TK value for brown rice 137Cs (b) at KND in 2013 (2.03 613 

Bq kg−1) was an outlier and hence excluded from data. 614 

 615 

Figure 3. Relationships between 137Cs and 133Cs concentrations in straw (upper panels) and 616 

brown rice (lower panels). The significances of the correlation coefficients (r) by t-test is 617 

indicated with asterisks: **p < 0.010, ***p < 0.001. Regression lines are shown when 618 

significant correlation was observed at p < 0.050. 619 

 620 

Figure 4. Exchangeable NH4
+ (a) and K (b) contents in control (CR) and increased N fertilizer 621 

(IN) subsections at the YWR field for samples collected five times in 2014: the days before 622 

transplanting (15 May), before midsummer drainage (23 Jun), after midsummer drainage in 623 

the medial- and short-flooding sections (16 Jul), after heading stage (6 Aug), and after 624 

drainage in the long-flooding section (5 Sep). Rectangles and error bars respectively represent 625 
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the averages and standard deviations of triplicates. 626 



Table 1. Schedule of paddy field management during the experiment 

  2012 2013  2014 

Field management  YWR  YWR  KND   YWR  KND 

Basal dressing fertilizer application and soil mixing 1 May 7 May 13 May  7 May 12 May 

Start of flooding and puddling 9  13 10–12a   14  14  

Transplanting 11  15  15   16  19  

Starting midsummer drainage in MF and SF sections 29 June 24 June 24 June  25 June 25 June 

Re-flooding in MF section 6 July 2 July 2 July  15 July 15 July 

Re-flooding in SF section 13  9  10   15  15  

Top-dressing fertilizer application  18  18  18   22  25  

Drainage in SF section 20 August 15 August 15 August  15 August 15 August 

Drainage in MF section 27  23  22   22  22  

Drainage in LF section 5 September 30  30   4 September 3 September 

Harvesting 26  10 September 11 September  19  16  
a In the case of 2013 in KND field, flooding started before basal dressing although the exact starting date was unfortunately not recorded. LF, MF and SF in the table mean as 

long-, medial- and short-flooding, respectively. 

  



Table 2. Annual mean of soil 137Cs and exchangeable K contents after harvest in experimental sections and subsections. 

  Soil 137Cs (Bq kg−1)  Exchangeable K (mmol kg−1) 

Sections YWR  KND  YWR  KND 

or subsections 2012 2013 2014  2013 2014  2012 2013 2014  2013 2014 

Water LF 160 136 167  167 173  4.7 4.4 4.6  2.5 2.9 

management MF 164 135 154  148 183  4.8 5.3 5.2  2.7 2.9 

 SF 174 147 161  147 169  4.8 5.5 5.8  2.7 3.0 

               

Fertilizer CR 164 133 155  151 152  4.9 5.4 5.3  2.5 2.7 

 0K 157 156 161  138 185  4.4 4.5 4.3  2.5 2.2 

 3BK 160 139 166  161 182  5.3 5.7 6.5  2.9 3.8 

 3TK 171 122 153  166 181  4.8 4.7 4.7  2.6 3.0 

 KS 174 138 177     4.4 5.0 5.1    

 0TK/IN 171 147 154     4.9 5.0 5.2    

Water management sections: LF, long flooding; MF, medial flooding; SF, short flooding. Fertilizer subsections; CR, control; 0K, no K fertilizer application; 3BK, triple basal 

dressing of KCl; 3TK, triple top-dressing of KCl; KS, K2SiO3 application instead of KCl; 0TK/IN, no K top-dressing in 2012 and increased N fertilizer application in 2013 and 

2014.  



Table 3. Annual mean yields of straw and brown rice in experimental sections and subsections. 

  Straw yield (g m−2)  Brown rice yield (g m−2) 

Sections YWR  KND  YWR  KND 

or subsections 2012 2013 2014  2013 2014  2012 2013 2014  2013 2014 

Water LF 685 792 664  551 694  438 460 388  417 423 

management MF 661 801 759  556 682  432 471 470  406 401 

 SF 685 817 809  510 717  463 468 479  393 427 

               

Fertilizer CR 651 814 732  552 708  437 477 431  409 418 

 0K 681 786 720  562 700  443 466 451  411 418 

 3BK 717 788 729  502 693  461 485 437  395 411 

 3TK 608 762 680  540 689  402 429 425  407 421 

 KS 743 834 811     482 497 485    

 0TK/IN 662 834 792     440 444 447    

Values are based on dry matter mass. Water management sections: LF, long flooding; MF, middle flooding; SF, short flooding. Fertilizer subsections; CR, control; 0K, no K 

fertilizer application; 3BK, triple basal dressing of KCl; 3TK, triple top-dressing of KCl; KS, K2SiO3 application instead of KCl; 0TK/IN, no K top-dressing in 2012 and 

increased N fertilizer application in 2013 and 2014.  

  



Table 4. Annual means of K concentrations in straw and brown rice in experimental sections and subsections. 

  Straw K (g kg−1)  Brown rice K (g kg−1) 

Sections  YWR  KND  YWR  KND 

or subsections  2012 2013 2014  2013 2014  2012 2013 2014  2013 2014 

Water LF 16.0 19.4 18.4  17.3 18.5  2.87 2.82 2.70  2.91 2.64 

management MF 16.1 19.1 19.8  16.4 17.3  2.89 2.82 2.74  2.95 2.69 

 SF 16.7 18.4 19.3  15.8 17.0  2.98 2.92 2.71  2.95 2.61 

               

Fertilizer CR 16.1 20.1 19.4  16.3 17.9  2.87 2.90 2.71  2.95 2.66 

 0K 16.4 18.8 18.8  16.4 17.1  2.99 2.90 2.72  2.90 2.67 

 3BK 16.3 19.4 19.5  16.6 16.9  2.78 2.99 2.70  2.98 2.60 

 3TK 16.0 17.2 18.2  16.6 18.7  2.97 2.76 2.80  2.92 2.66 

 KS 16.7 20.6 20.3     2.91 2.97 2.68    

 0TK/IN 16.2 17.9 18.7     2.98 2.59 2.68    

Water management sections: LF, long flooding; MF, middle flooding; SF, short flooding. Fertilizer subsections; CR, control; 0K, no K fertilizer application; 3BK, triple basal 

dressing of KCl; 3TK, triple top-dressing of KCl; KS, K2SiO3 application instead of KCl; 0TK/IN, no K top-dressing in 2012 and increased N fertilizer application in 2013 

and 2014. 



Table 5. Analysis-of-variance table for 137Cs activity and 133Cs concentration in straw and brown rice with results of Tukey’s post-hoc multiple comparisons. 

Factor DFa 
Error Straw 137Cs  Brown rice 137Cs  Straw 133Cs  Brown rice 133Cs 

term MSb F p  MS F p  MS F p  MS F p 

Fixed effects                  

Water management 2 s w 5.61 107.6 0.0092  0.171 2.0 0.3370  98.5 9.6 0.0942  10.2 34.9 0.0279 

Fertilizer 3 s w f 0.75 3.0 0.0866  0.045 3.7 0.0572  10.1 3.3 0.0732  4.0 17.7 0.0004 

Year 1 Residual 2.11 8.9 0.0114  0.079 6.0 0.0320  4.2 1.9 0.1958  14.2 37.2 0.0001 

w f 6 s w f 0.13 0.5 0.7862  0.027 2.2 0.1369  5.0 1.6 0.2455  0.8 3.5 0.0443 

w y 2 Residual 0.65 2.7 0.1058  0.057 4.3 0.0414  0.3 0.1 0.8810  1.8 4.7 0.0312 

f y 3 Residual 0.41 1.7 0.2179  0.051 3.8 0.0399  10.3 4.6 0.0230  2.4 6.2 0.0087 

w f y 6 Residual 0.18 0.8 0.6160  0.023 1.7 0.1946  3.6 1.6 0.2280  0.5 1.2 0.3716 

Random effects                  

Site 1 s w 0.57 10.8 0.0812  0.068 0.8 0.4672  91.8 9.0 0.0957  41.3 141.2 0.0070 

s w 2 s w f 0.05 0.2 0.8154  0.085 7.1 0.0155  10.2 3.3 0.0835  0.3 1.3 0.3235 

s w f 9 Residual 0.25 1.1 0.4564  0.012 0.9 0.5462  3.1 1.4 0.2945  0.2 0.6 0.7761 

Residual 12  0.24    0.013    2.2    0.4   

Tukey’s post-hoc In 2013–2014 LF > MF, SF  -  -  - 

 multiple In 2013 -  no significance no significance  - 

  comparisons test In 2014 -    0K > CR, 3BK, 3TK 0K, 3TK > 3BK - 
a Degrees of freedom. b Mean square. Interactions between factors were shown as combinations of capital letter for each factor (w: water management, f: fertilizer, y: year, s: 

site). Data from four subsections (CR, 0K, 3BK and 3TK) in 2013–2014 were used for the analysis. When effects of water management or fertilizer were significant (p < 0.050) 

without any interaction, Tukey’s post-hoc multiple comparisons test was used to determine significant differences among water management sections (LF, long flooding; MF, 

middle flooding; SF, short flooding) or fertilizer subsections (CR, control; 0K, no K fertilizer; 3BK, triple basal dressing of KCl; 3TK, triple top-dressing of KCl) at p < 0.050. 

When significant interactions of year with water management or fertilizer were revealed by ANOVA, the post-hoc test was performed separately for 2013 and 2014 data at p < 

0.025.  








