

Arthrobacter ureafaciens の酵素によるグラムスケールでのオリゴ糖 DFA I の調

メタデータ	言語: English
	出版者:
	公開日: 2019-12-20
	キーワード (Ja):
	キーワード (En):
	作成者: 原口, 和朋, 吉田, 充, 大坪, 研一
	メールアドレス:
	所属:
URL	https://doi.org/10.24514/00002833

技術報告

The gram-scale preparation of oligosaccharide DFA I using the enzyme from *Arthrobacter ureafaciens* A51-1.

Kazutomo Haraguchi*, Mitsuru Yoshida and Ken'ichi Ohtsubo

National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan

Abstract

The method for the gram-scale preparation of oligosaccharide DFA I was developed, for the first time. Using the partially purified inulin fructotransferase (DFA I-producing) from *Arthrobacter ureafaciens* A51-1, the crude DFA I was prepared. With the baker's yeast treatment, ion exchange resin treatment and the gel filtrations by Toyopearl HW40S purified DFA I have prepared. With the method described in this paper, 2.5 g of purified DFA I was prepared from 10 g of inulin.

Introduction

Inulin is a polysaccharide contained in chicory, dahlia, Jerusalem artichoke and other plants. The chemical structure of inulin is a beta-2, 1 linked fructose polymer terminated with a sucrose residue. In studies of inulin decomposing enzymes, inulinase [EC 3.2.1.7] from molds and yeasts has previously been reported. A new type of inulin decomposing enzyme produced by Arthrobacter ureafaciens was discovered¹⁾ (Uchiyama et al. 1973). The enzyme converted inulin into an oligosaccharide DFA III (di-D-fructofuranose 1,2': 2, 3' dianhydride) and a small amount of other oligosaccharides. This enzyme was designated as inulin fructotransferase (DFA III-producing) [EC 2.4.1.93]. Since then, there have been several reports on the inulin fructotransferase (DFA III-producing) from Arthrobacter species^{2)~5)}. Kang et $al^{6)}$. reported on the enzyme from Bacillus sp.

Subsequently, we discovered another type of inulin decomposing enzyme⁷⁾ (Seki *et al.* 1989) from *Arth-robacter globiformis* S14-3. The enzyme converted inulin into oligosaccharide DFA I (di-D-fructofur-anose 1,2': 2,1' dianhydride) and a small amount of other oligosaccharides. The enzyme was designated as inulin fructotransferase (DFA I-producing) [EC 2.4.1. 200]. In the enzymes producing DFA I from inulin, an enzyme from *Streptomyces* sp.⁸⁾ was reported. Ueda *et al.* (1994) reported on an enzyme from *Arthrobacter sp.* and we reported on the enzyme from *Arthrobacter ureafaciens* A51-1¹⁰.

In the previous reports^{7)~10)} on the DFA I producing enzyme, the amount of the prepared DFA I was mgscale. To elucidate the functions of the oligosaccharide DFA I by the experiment on animals, gram-scale amounts are needed. In this paper, we describe the method for preparation of DFA I of the amount of gram-scale, for the first time.

2007年10月25日受付,2007年11月29日受理 [§]Corresponding author: Kazutomo Haraguchi Fax: + 81-0298-38-7996 e-mail: haraguti @ affrc.go.jp

Materials and methods

Cultivation of microorganism

Arthrobacter ureafaciens A51-1 was pre-cultured in 500 ml shaking flask (medium 100 ml) at 30°C, for 24h. The pre-culture medium was composed of 0.4 % Na₂ HPO₄ • 12H₂O, 0.1 % KH₂PO₄, 0.1 % NaNO₃, 0.05 % MgSO₄ • 7H₂O, 0.001 % CaCl₂ • 2H₂O, 0.001% FeSO₄ • 7H₂O, 0.05 % yeast extract (Difco), and 0.3% inulin at pH 7.0. The pre-culture was inoculated in a 51 Erlenmeyer flask containing 1 l of the same medium and cultured at 30°C, for 24 h. After the cultivation, the cells were removed by centrifugation (8000 x g, 30 min) and the supernatant was dialyzed against 10 mM Tris-HCl buffer at pH 8.5. The dialyzed solution was used as a crude enzyme solution.

Standard assay methods

For the measurement of the enzyme activity, 0.1 M citrate buffer at pH5.5 (0.5 ml), the enzyme solution (0.1 ml), water (0.4 ml), and 2 % inulin (1.0 ml) were mixed. The enzyme reaction was performed at 50°C, for 30 min, and the reaction was stopped by heating at 100°C, for 7 min. The DFA I produced was determined by HPLC (column, Shim-pack CLC ODS, 4.6 mm x 25 cm (Shimadzu Co. Ltd., Kyoto); mobile phase, water ; detector, RI detector). One unit of the enzyme was defined as which can produce 1 μ mole of DFA I per min at pH5.5 and 50°C. The protein concentrations were determined by the method of Lowry *et al.*¹¹ (1951) using bovine serum albumin as a standard.

Partial purification of enzyme

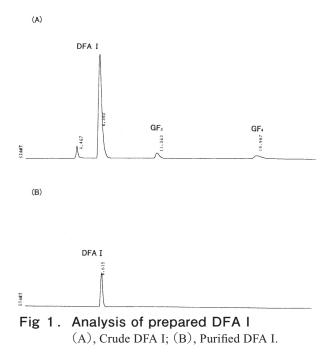
The crude enzyme solution was applied to a column of DEAE-Toyopearl 650 M (2.5 cm x 17 cm) equilibrated with 10 mM Tris-HCl buffer at pH8.5. The elution was performed with linear, 0 to 0.5 M NaCl gradient in the same buffer. Fractions showing the enzyme activity were pooled. The obtained fraction was dialyzed against 10 mM Tris-HCl buffer at pH 8. 5, and the dialyzed solution was used for the enzyme reaction.

¹³C NMR spectrum

The ¹³C NMR spectrum was recorded in D₂O with an Avance 500 spectrometer (Bruker Co. Ltd., Germany) using 3-trimethylsilyl-1-propanesulfonnic acid sodium salt (DSS) as an external standard.

Results and discussion

Partial purification of enzyme


Table 1 shows the summary of the enzyme purification. With this process, the specific activity was increased about 4 times, and recovery of the activity was 31.0 %. The fraction obtained at this stage was used for the production of crude DFA I.

Preparation of crude DFA I

The inulin (10 g) was dissolved in 100 ml of water with a warming by boiling water. After cooling, 2 ml of 0.1 M citrate buffer at pH 5.5 and 40 ml of the partially purified enzyme (2.7 U/ml) was added. The pH of the mixture was adjusted at 5.5. The enzyme reaction was performed at 50°C for 24 h. The reaction was stopped by heating at 100°C for 7 min. After cooling, the prepared crude DFA I solution was anal- yzed by HPLC (Shimpack CLC ODS). As shown in Fig 1 (A), the solution contains DFA I (main prod- uct) and the residual oligo-saccharides (GF₃ and GF₄).

Table 1 Partial purification of inulin fructotransferase (DFA I-producir	Table
--	-------

Step	Total activity	Total protein	Specific activity	Recovery
	(U)	(mg)	(U/mg)	(%)
Crude enzyme	520	99.3	5.24	100
DEAE-Toyopearl	161	7.92	20.3	31.0

Purification of DFA I

1) Baker's yeast treatment.

A dry baker's yeast (0.2 g) was suspended in 20 ml of water. The suspension was centrifuged (8 000 x g, 30 min) and the precipitate was re-suspended in 10 ml of water. To remove the fermentable sugars by alcohol fermentation, the bakers yeast suspension (10 ml) was added to the crude DFA I solution. The suspension was incubated at 30°C for 4 h. After the incubation, the yeast cells were removed by centrifugation (8,000 x g, 30 min). The supernatant was heated at 100 °C for 7 min.

2) The ion exchange resin treatment.

After cooling, an ion exchange resin Amberlite MB-

3 (5 g) was added to the reaction mixture, and rested for 4 h. The resin was removed by a filter paper (Advantec No. 2), and the filtrate was concentrated by freeze drying.

3) The gel filtration (1st)

The freeze dried sample was dissolved in 8 ml of water (sample a). A part of the sample a (2 ml) was applied on a column of Toyopearl HW40S (5.0 cm x 20 cm, Tosoh Co. Ltd.) equilibrated with water. The elution was performed by water and the fractions containing DFA I were pooled. This gel filtration (1st) was repeated 8 times and the all of the sample a was used. The fractions obtained by the gel filtrations (1st) were combined.

4) The gel filtration (2nd)

The combined fraction was concentrated by freeze drying. The freeze dried sample was dissolved in 5 ml of water (sample β). A part of the sample β (2 ml) was applied on a column of Toyopearl HW40S (5.0 cm x 20 cm) equilibrated with water. The elution was performed by water and the fractions containing DFA I were pooled. The gel filtration was repeated 5 times and all of the sample β was used. The fractions obtained at this step were combined.

Analysis of purified fraction

The obtained DFA I fraction was analyzed by HPLC. As shown in Fig. 1(B), the obtained fraction contained pure DFA I. The amount of purified DFA I obtained was 2.5 g (The amount was determined by HPLC.). A part of the purified fraction was concentrated by freeze drying and analyzed by 13C NMR. As shown in Table 2, the chemical shifts of the main

Assignment carbon	Chemical shifts (ppm) of ¹³ C-NMR of				
atom number	Main reaction produc		Standard DFA I (ref.10		
	(<i>a</i>)	(β)	(<i>a</i>)	(β)	
1	65.3	63.9	65.3	63.8	
2	105.2	101.5	105.1	101.5	
3	84.5	86.2	84.5	86.2	
4	79.6	77.2	79.6	77.2	
5	83.9	80.4	83.9	80.4	
6	64.4	65.2	64.4	65.2	

Table 2 ¹³C NMR chemical shifts of main reaction product and DFA I

reaction product agreed very closely with those of the standard DFA I.

References

- Uchiyama, T., Niwa, S., & Tanaka, K. Purification and properties of Arthrobacter ureafaciens inulase II. *Biochimica Biophysica* Acta, 315, 412-420 (1973).
- Haraguchi, K., Kishimoto, M., Seki, K., Kobayashi, S., & Kainuma, K. Purification and properties of inulin fructotransferase (depolymerizing) from Arthrobacter globiformis C11-1. *Agric. Biol. Chem.*, 52, 291-292 (1988).
- Kawamura, M., Takahashi, S., & Uchiyama, T. Purification and some properties of inulin fructotransferase (depolymerizing) from *Arthrobacter ilicis. Agric. Biol. Chem.*, 52, 3209-3210 (1988).
- Yokota, A., Enomoto, K., & Tomita, F. Purification and properties of an inulin fructotransferase (depolymerizing) from *Arthrobacter* sp. H65-7. *J. Ferm. Bioeng.*, 72, 262-265 (1991).
- Haraguchi, K., Yamanaka, T., & Ohtsubo, K. Purification and properties of a heat stable inulin fructotransferase (DFAIII-producing) from *Arthrobacter pascens* T13-2. *Carbohydr. Polym.*, 52, 117-121 (2002).

- Kang, S., Kim, W., Chang, Y., & Kim, S. Purification and properties of inulin fructotransferase (DFAIII-producing) from *Bacillus* sp. snu-7. *Biosci. Biotech. Biochem.*, 62, 628-63 (1998).
- Seki, K., Haraguchi, K., Kishimoto, M., Kobayashi, S., & Kainuma, K. Purification and properties of a novel inulin fructotransferase (DFA Iproducing) from *Arthrobacter globiformis* S14-3. *Agric. Biol. Chem.*, 53, 2089-2094 (1989).
- Kushibe, S., Sashida, R., Morimoto, Y., & Ohkishi, H. Purification and characterization of a di-Dfructouranose 2', 1: 2, 1'-dianhydride producing enzyme from *Streptomyces* sp. MCI-2524. *Biosci. Biotech. and Biochem.*, 57, 2054-2058 (1993).
- Ueda, M., Sashida, R., Morimoto, Y., & Ohkishi, H. IPurification of inulin fructotransferase (DFA I-producing) from *Arthrobacter* sp. MCI2493 and production of DFA I from inulin by the enzyme. *Biosci. Biotech. Biochem.*, 58, 574-575 (1994).
- Haraguchi, K., Yoshida, M., Ohtsubo, K.. Purification and properties of a heat-stable inulin fructotransferase from *Arthrobacter ureafaciens*, *Biotechnol. Lett.* 25, 1049-1053 (2003).
- Lowry, O. H., Rosebrough, N. J., Farr A. L., & Randall R. J. Protein measurement with the Folin phenol reagent. *J. Biol. Chem.*, 193, 265-275 (1951).

Arthrobacter ureafaciens の酵素によるグラムスケールでの オリゴ糖 DFAIの調

原口和朋·吉田 充·大坪研一

(独)農業·食品産業技術総合研究機構 食品総合研究所

動物試験などによる機能性解明の実験に用いる目的 で、グラムスケールでのオリゴ糖 DFA I の調製法を初 めて確立した. A. ureafaciens A51-1 由来の DFA I 合成 酵素を部分精製し、粗製 DFA I の調製を行った. ここ からパン酵母によるアルコール発酵処理、イオン交換 樹脂処理, トヨパール HW40S カラムによるゲル濾過 を行うことにより,精製 DFA I オリゴ糖の標品を得た. 原料であるイヌリン 10gから精製 DFA I 2.5gを回収 することができた.