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Abstract 22 

We evaluated the effects of polyethylene glycol (PEG) and Supercool X-1000 (SC) as 23 

supplements during the vitrification of immature cumulus-enclosed porcine oocytes in a solution based 24 

on 17.5% ethylene glycol+17.5% propylene glycol. After warming, the oocytes were subjected to in vitro 25 

maturation, fertilization and embryo culture. In Experiment 1, equilibration and vitrification solutions 26 

were supplemented with or without 2% (w/v) PEG (PEG+ and PEG-, respectively). The survival rate, 27 

cleavage and blastocyst development were similar between PEG+ and PEG- groups; however, all values 28 

were lower than those in the non-vitrified control. In Experiment 2, vitrification solution was 29 

supplemented with or without 1 % (v/v) SC (SC+ and SC-, respectively). The percentages of survival and 30 

blastocyst development were similar between SC+ and SC- groups; however, lower than those in the 31 

non-vitrified control. The percentage of cleavage in SC- group was significantly lower than the control 32 

and the SC+ groups, which were in turn similar to one another. In both experiments, the cell numbers in 33 

blastocysts were not significantly different among the non-vitrified and vitrified groups. In conclusion, 34 

PEG did not improve oocyte survival and embryo development whereas SC improved the ability of 35 

surviving oocytes to cleave but not to develop to blastocysts. 36 

Key words: Immature oocyte, Pig, Polyethylene glycol, Synthetic ice blocker, Vitrification.37 
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Introduction 38 

Cryopreservation of gametes and embryos keeps cell metabolism quiescent during storage, 39 

allowing the subsequent use in programs of assisted reproduction and gene banks formation. Porcine 40 

oocyte cryopreservation has potential agricultural and biomedical importance (Zhou & Li 2009). 41 

However, this technique in pigs is considered much more difficult comparing with other domestic animal 42 

species (Mullen & Fahy 2012) and is yet to be applied in practice (Nohalez et al. 2015). Recently it was 43 

demonstrated that blastocysts obtained from porcine oocytes cryopreserved at the immature germinal 44 

vesicle (GV) stage by solid surface vitrification could develop to term, despite of reduced embryo 45 

development (Somfai et al. 2014). Vitrification of oocytes at the GV stage is considered as an alternative 46 

way to prevent spindle depolymerization or damage often observed during the preservation of matured 47 

oocytes, owing to the absence of the meiotic spindle (Moward et al. 2012). Matured porcine oocytes are 48 

known to survive cryopreservation at higher rates compared with immature ones (Rojas et al. 2004; 49 

Gupta et al. 2007). Nevertheless, previous studies have demonstrated that high rates (over 80 %) of 50 

oocyte survival can be achieved even after the vitrification at the GV stage by careful optimization of 51 

cryoprotectant treatment regimen (Somfai et al. 2013,2015) and warming temperatures (Somfai et al. 52 

2014). Although reasonable survival rates have been reported after vitrification of the GV stage porcine 53 

oocyte (Gupta et al. 2007; Nohalez et al. 2015; Somfai et al. 2014,2015) the embryo developmental 54 

ability of surviving oocytes remained low underlining the need to further improvements in vitrification 55 

protocols. For this purpose, one possible approach is the application of alternative CPAs in existing 56 

vitrification protocols. Polyethylene glycol (PEG) and synthetic ice blockers such as Supercool X-1000 57 

(SC) have been used as alternative additives during vitrification to improve survival and developmental 58 

rates of oocytes in mice (Fahy et al. 2004; O’Neil et al. 1997) and horses (de Leon et al. 2012). However, 59 

to our knowledge PEG and synthetic ice-blockers have not been tested for the vitrification of immature 60 
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porcine oocytes to date. The objective of this study was to investigate the effects of PEG and SC for the 61 

vitrification of immature porcine oocytes on post-warming survival and subsequent embryo 62 

development. In 2 separate experiments, PEG and SC were applied in our current vitrification protocol at 63 

the concentrations based on previous studies in other species.  64 

 65 

Materials and Methods 66 

Collection of cumulus- oocyte complexes (COCs) 67 

Ovaries of crossbred gilts (Landrace × Large White) were collected from a local slaughterhouse and 68 

transported to the laboratory at 35‒37 °C in a Dulbecco’s Phosphate Buffered Saline (PBS) within 1-2 69 

hours. COCs were collected by scraping of 2‒6 mm follicles in medium 199 (M199 with Hanks' salts; 70 

Sigma-Aldrich, St. Louis, MO, USA) supplemented with 5% (v/v) of fetal bovine serum (Gibco, Thermo 71 

Fisher Scientific, Life Technologies, Carlsbad, CA, USA), 20 mM of HEPES (Dojindo Laboratories, 72 

Kumamoto, Japan), and antibiotics [100 IU/mL of streptomycin sulfate (Sigma-Aldrich), 100 IU/mL 73 

penicillin G potassium (Sigma-Aldrich)]. After dissection, COCs with multilayered compact cumulus and 74 

homogenous ooplasm were selected for further experiments. 75 

 76 

Vitrification and warming of COCs 77 

Cryoprotectant-treatment regimen before vitrification was performed according to previous report 78 

(Somfai et al. 2015). In brief, a group of 50‒70 COCs were incubated in 1 mL a basic medium (BM) for 30 79 

min, which was a modified glucose-free North Carolina State University (NCSU)-37 medium (Petters & 80 

Wells 1993) supplemented with 20 mM HEPES, 0.17 mM sodium pyruvate, 2.73 mM sodium lactate, 50 81 
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µM ß-mercaptoethanol. The medium was further supplemented with 4 mg/mL bovine serum albumin 82 

(Fraction V, Sigma-Aldrich) and 7.5 µg/mL cytochalasin B (C-6762, Sigma-Aldrich). Then they were 83 

transferred into equilibration solution (ES) comprised of BM supplemented with 7.5 µg/mL cytochalasin 84 

B and 4% (v/v) of a permeating CPA combination [ethylene glycol (EG) + Propylene glycol (PG) = 1:1], for 85 

5‒15 min (Somfai et al. 2015) at 38.5 °C. Then, 10‒12 COCs were washed 2 times in 50 µL of vitrification 86 

solution (VS) in 20 seconds and then they were loaded on Cryotop sheets (Kitazato, Biopharma, Shizuoka, 87 

Japan) in minimum volume of VS kept at 38.5 °C and were plunged in liquid nitrogen (LN) (Kuwayama 88 

2007). VS was comprised of BM supplemented with 50 mg/mL polyvinyl pyrrolidone (P-0930, Sigma-89 

Aldrich), 0.3 M sucrose (196-00015, Wako Pure Chemical Industries, Osaka, Japan) and 35% (v/v) of EG+ 90 

PG (1:1, total percentage). The treatment of COCs in VS medium (including washing, loading and 91 

removal of excess VS) was performed in 40 seconds. Vitrified samples were stored in LN tank until use. 92 

Warming of vitrified COCs was performed according to a previous report (Somfai et al. 2015) with slight 93 

modifications. In brief, Cryotop devices were immersed directly into 2.5 mL of warming solution (0.4 M 94 

Sucrose in BM) in a 35-mm plastic dish (Falcon 351008, Becton Dickinson, Franklin Lakes, NJ, USA) for 1 95 

min at 42 °C. The COCs were then consecutively transferred for periods of 1 min (each) to 500-µL 96 

droplets of BM supplemented with 0.2, 0.1 and 0.05 M of sucrose at 38.0°C. Then COC’s were washed in 97 

BM without sucrose at 38.0°C and then placed into maturation medium. 98 

 99 

In vitro maturation (IVM) 100 

After warming, all COCs were subjected to IVM. Oocytes were washed 3 times in 2ml aliquots of pre-101 

incubated IVM medium which was NCSU-37 containing 10% (v/v) porcine follicular fluid, 0.6 mM 102 

cysteine, 50 µM ß-mercaptoethanol, 1 mM dibutyryl cAMP (dbcAMP; Sigma), 10 IU/mL eCG (Serotropin; 103 
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ASKA Pharmaceutical Co., Ltd., Tokyo, Japan), 10 IU/mL hCG (500 units; Puberogen, Novartis Animal 104 

Health, Tokyo, Japan), 0.1 mg/mL streptomycin sulfate and 100 IU/mL penicillin G. Groups of 40‒50 105 

COCs were cultured in 500 µL aliquots of IVM medium in 4-well dishes (Nunc, Nunclon Delta Surface, 106 

Thermo Fisher Scientific, Roskilde, Denmark) without oil coverage, in an atmosphere of 5% CO2, 5% O2 107 

and 90% N2 at 39° C for 22 h. Then, they were subsequently cultured for an additional 22 h in IVM 108 

medium without dbcAMP and hormones under the same conditions.  109 

 110 

In vitro fertilization (IVF) 111 

The procedures for IVF and embryo culture were performed according to a previous report (Kikuchi 112 

et al. 2002). The medium used for IVF was a modified Pig-FM (Suzuki et al. 2002). The COCs after IVM 113 

were partially denuded by pipetting, washed 3 times in IVF medium and then transferred into 95-µL 114 

droplets of the IVF medium covered by paraffin oil (Paraffin Liquid; Nacalai Tesque, Kyoto, Japan). 115 

Frozen-thawed epididymal spermatozoa from a Landrace boar were pre-incubated in media 199 (with 116 

Earle’s salts, Gibco, and PH adjusted to 7.8) for 15 min (Kikuchi et al. 1998). After serial dilution in IVF 117 

medium, five µL of the sperm suspension was introduced into the IVF droplets, the final sperm 118 

concentration was set to 5 × 104 cells/mL. After 30 min of co-incubation with sperm at 39 °C under 5% 119 

CO2, 5% O2 and 90% N2, the oocytes with spermatozoa attached to the zona pellucida were carefully 120 

transferred into another 100 µL drop of IVF medium without sperm and cultured for an additional 2.5 h 121 

under the same conditions (Grupen, personal communication). 122 

 123 

Assessment of oocyte survival and subsequent in vitro embryo culture (IVC). 124 
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At the end of IVF, presumptive zygotes were transferred into 2 ml of pre-incubated IVC-PyrLac 125 

medium (Kikuchi et al. 2002). Spermatozoa and cumulus cells were removed from the surface of the 126 

zona pellucida by pipetting through a fine glass pipette. At this time, the live/dead status of the oocytes 127 

was assessed morphologically by observation under a stereomicroscope. Survival was evaluated based 128 

on the integrity of oolema. Oocytes with normal spherical shape demarcation, smooth surface, dark and 129 

eventually granulated were considered live; whereas oocytes that did not any of fit these criteria were 130 

categorized as dead. Only live oocytes were subjected to IVC, which was performed in 500-µL of IVC-131 

PyrLac, on Days 0 to 2 (Day 0= IVF) and 500-µL of IVC-Glu day 2-6 in 4-well dishes without oil coverage at 132 

39 °C under 5% CO2, 5% O2 and 90% N2 (Kikuchi et al. 2002). Cleavage rates were recorded on Day 2, 133 

blastocyst rate on Day 7. On Day 2, only cleaved embryos (2‒4 cells) were subjected to subsequent 134 

culture to obtain embryos with good quality (Dang-Nguyen et al. 2010). In the morning of Day 7, the 135 

embryos without a visible perivitelline space containing more than 10 blastomeres and a blastocoel 136 

were categorized as blastocysts (Somfai et al. 2013). 137 

 138 

Evaluation of blastocyst cell number 139 

To verify the total cell numbers, blastocysts on Day 7 were placed in 25 µg/mL of Hoechst 33342 140 

(H 33342, Calbiochem, San Diego, CA, USA) dissolved in 99.5% ethanol and kept at 4 °C overnight. They 141 

were then washed in ethanol 99.5% and mounted on glass slides in glycerol droplets, flattened by cover 142 

slips and examined under UV light with an excitation wavelength of 330‒385 nm, using an 143 

epifluorescence microscope (IX-71, Olympus, Tokyo, Japan). The digital image of each embryo was 144 

recorded and the total numbers of nuclei labeled by H33342 were counted. 145 

 146 
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Experimental design 147 

Experiment 1. This experiment was performed to assess the effects of PEG applied during vitrification of 148 

immature COCs on oocyte survival and post IVF- embryo development. The media during equilibration 149 

and vitrification were supplemented with or without 2% (w/v) PEG (#6000 MW=7300‒9000, Nacalai 150 

Tesque). A non-vitrified group of immature COCs served as control. Oocyte survival after IVM, IVF and 151 

subsequent IVC were compared among the PEG-treated and not treated vitrified groups and the control. 152 

The experiment was replicated six times.  153 

Experiment 2. This experiment was performed to observe effects of Supercool X-1000 (SC, 21 st Century 154 

Medicine Inc., Rancho Cucamonga, California, USA) during vitrification of immature COCs. The 155 

vitrification medium was supplemented with or without 1% (v/v) of SC. A non-vitrified group of 156 

immature COCs was used as a control. All groups (the SC-treated and non-treated vitrified groups and 157 

control groups) were compared in terms of their survival after vitrification and embryo development 158 

after IVM/IVF. The experiment was replicated five times. 159 

 160 

Statistical Analysis 161 

All data were expressed as mean ± SEM values and percentage data after arcsine transformation 162 

were analyzed by one-way ANOVA followed by Tukey`s multiple comparison test using the KyPlot 163 

package (Ver. 2.0, KyensLab Inc., Tokyo, Japan). For all analysis, P < 0.05 was set as the significance level. 164 

 165 

Results 166 

Experiment 1 167 
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Survival rates of the oocytes after vitrification in the presence or absence of PEG were 168 

statistically similar to one another (65.80% and 61.12%, respectively); however, they were both 169 

significantly lower than that in the non-vitrified control (93.43%) (Fig. 1). Cleavage and blastocyst 170 

developmental rates were statistically similar between groups vitrified with or without PEG, but were 171 

significantly lower than that in the non-vitrified control (Table 1). Nevertheless, the total cells numbers 172 

in blastocysts were not significantly different among the non-vitrified and vitrified groups, irrespective of 173 

PEG treatment (Table 1).  174 

 175 

Experiment 2 176 

The survival rates of oocytes after vitrification in the presence or absence of SC were statistically 177 

similar to one another (53.38% and 60.32%, respectively); however, they were both significantly lower 178 

than that in the non-vitrified control (93.5%) (Fig. 2). The cleavage rate of the SC-vitrified oocytes was 179 

statistically similar to those of the non-vitrified oocytes (56.38 and 69.3% respectively); however, the 180 

group vitrified without SC showed a significantly lower rate of cleavage (39.4%) compared with the 181 

control and also with the SC vitrified treatment (Table 2). The SC-treated and non-treated vitrified 182 

groups showed similar results in terms of blastocyst developmental rates (4.7% and 2.3 %, respectively) 183 

(Table 2); however, these rates were lower than that in the non-vitrified control (13.3 %), similarly to the 184 

results of Experiment 1, the total cell numbers in blastocysts were not significantly different among the 185 

non-vitrified and vitrified groups, irrespective of SC treatment (Table 2). 186 

 187 

Discussion 188 
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For vitrification of animal cells including oocytes, CPAs are used at high concentration combined 189 

with rapid cooling to eliminate ice crystal formation. However, high concentrations of CPAs also show 190 

toxicity and cause cell damage (Best 2015). The composition of CPAs in vitrification medium has a major 191 

impact on the success of vitrification on mammalian oocytes as it affects the speed of dehydration, CPA 192 

uptake, osmotic stress and other toxic effects (Best 2015). Accordingly, survival rates of immature 193 

porcine oocytes during vitrification could be improved by optimizing CPA composition (Somfai et al. 194 

2013, 2015). The aim of the present study was to test for the first time if supplementation in media 195 

during vitrification with alternative non-permeating CPA such as PEG and SC, which were reported to act 196 

positively during oocyte cryopreservation in mice and horses (de Leon et al. 2012; Fahy et al. 2004; 197 

O’Neil et al. 1997) would affect the outcome of vitrification of GV-stage porcine oocytes.  198 

It is generally accepted, that the major site of cryoinjury during cryopreservation of mammalian 199 

oocyte is the oolemma (Guetler et al. 2005; Horvath & Seidel Jr 2006; Brambillasca et al. 2013; Sprincigo 200 

et al. 2015). Furthermore, it has been suggested that due to the membrane structure specific at the GV-201 

stage, high aquaporin content (Guetler et al. 2005) and insufficient permeation of CPA cause increased 202 

osmotic stress and oocyte mortality during the vitrification of immature porcine oocytes, especially 203 

when CPA with slow penetration speed such as EG is used (Somfai et al. 2013). PEG is a highly hydrated 204 

polymer that can cause dehydration of membrane surfaces (Arnold et al. 1983,1990) and can alter the 205 

molecular order the membrane lipid bilayer, at the point of contact between membranes, due the 206 

aggregation and dehydration (Lentz & Lee 1999; Yamazaki et al. 1989). This polymer has been used as a 207 

CPA during vitrification of mouse oocytes, and it reported the improved the survival and blastocyst rates 208 

(O’Neil et al. 1997). Also, this compound is applied in vitrification protocols for porcine blastocyst-stage 209 

embryos resulting in their improved cryotolerance (Misumi et al. 2013; Mito et al. 2015). PEG is known 210 

to depress the freezing point of solutions and due the impermeability to cells, promote their 211 
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dehydration (Banker et al. 1992). Also, PEG would hypothetically improve survival rates by protecting 212 

externally the oocyte membrane (O’Neil et al. 1997). On the other hand, it remained unclear if the 213 

structural changes in membrane caused by PEG affect the permeation of permeating CPA such as EG 214 

and PG, and therefore the survival of immature porcine oocytes. In the present study, we applied 2% 215 

(w/v) PEG during the equilibration period for 15 min and during 40 seconds of subsequent vitrification of 216 

immature porcine oocytes. This concentration and the product itself were identical to those reported 217 

previously for the vitrification of porcine embryos (Misumi et al. 2013). Our results demonstrated that 218 

such application of PEG using our current vitrification protocol did not alter the survival and 219 

developmental rates of vitrified immature oocytes. This suggests that, using the current vitrification 220 

protocol, insufficient dehydration or the membrane structure of the GV oocyte may not be major factors 221 

that determine the survival and embryo developmental rates after vitrification. However, it must be 222 

noted that our current protocol applies a combination of EG and PG as permeating CPAs. In this system 223 

the role of PG is to increase CPA penetration speed and thus to ease the osmotic stress during the 224 

vitrification process (Somfai et al. 2013). It is possible that PEG may exert a positive effect in vitrification 225 

systems, where only CPA with a permeation speed slower than that of PG (such as EG or glycerol) are 226 

used. Although O’Neil et al (1997) reported improved survival and developmental competence of mouse 227 

matured oocytes by the aid of PEG, the efficacy of PEG to affect cryotolerance of oocytes may vary 228 

between species and specific oocyte meiotic or maturational stages. Compared with other mammalian 229 

species, porcine oocytes have a greater hypothermic sensitivity due to the large amount of cytoplasmic 230 

lipid (Zhou & Li 2009) and, there are crucial differences between the metaphase-II and GV stage oocytes 231 

in terms of the permeability of their membrane to water and CPAs (Le Gal et al. 1994; Agca et al. 1998).  232 

In previous studies, synthetic ice blockers had been suggested to be effective during 233 

cryopreservation process, reducing toxicity of the solutions (Wowk et al. 2000). These chemical 234 
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compounds are copolymers that can prevent ice nucleation resulting in increased rates of survival (Fahy 235 

et al. 2004). The application of synthetic ice blockers such as Supercool X-1000 or Supercool Z-1000 236 

during cryopreservation showed promising results matured mouse oocytes (Fahy et al. 2004), immature 237 

equine oocytes (de Leon et al. 2012), mouse ovaries tissues (Tan et al. 2012) and rabbit embryos 238 

(Marco-Jimenez et al. 2014). Supercool X-1000 ice blocker is a copolymer of polyvinyl alcohol, with 20% 239 

of vinyl acetate content and would prevent ice formation, in the early stages of ice nucleation, during 240 

cooling or warming, even when present in very low concentrations (Wowk et al. 2000). While the CPAs 241 

prevent ice crystal formation by interacting with the water, Supercools are believed to prevent by 242 

molecular recognition of ice nucleators (Wowk 2005). In Experiment 2 of the present study, we applied 243 

Supercool X-1000 at 1% (v/v) in the vitrification solution, based on the previous report (Marco-Jimenez 244 

et al. 2014). Experiment 2 revealed that, Supercool X-1000 did not affect the ratio of post thaw survival 245 

of vitrified oocytes but significantly increased the ability of surviving oocytes to cleave after IVF. This 246 

suggests that Supercool X-1000 acted positively on oocytes during vitrification not by preventing 247 

membrane damage but reducing sub-lethal damages which affect embryo development. The exact 248 

mechanism behind this phenomenon remains unclear. Supercool X-1000 is not membrane permeable, 249 

therefore is can be suspected that this CPA exerted its positive effect via acting on the extra oocyte 250 

compartments of the COCs such as the cumulus cells or the gap junctions between the cumulus cells and 251 

oocytes, which are essential for to oocytes to acquire their developmental competence (Nagai et al. 252 

2006). On the other hand, despite of the significant increase in cleavage rates, Supercool X-1000 did not 253 

increase the rate of blastocyst formation after vitrification, which suggests that the vitrification process 254 

exerts negative effects on embryo development even beyond the 2-cell stage, irrespective of Supercool 255 

X-1000. This suggestion is supported by the fact, that blastocyst developmental competence of cleaved 256 

embryos obtained from vitrified oocytes was not different between the groups treated with or without 257 

Supercool X-1000 but were lower than that in non-vitrified control (Table 2).  258 
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In the present study, embryo development after IVM, IVF and IVC of immature oocytes surviving 259 

the vitrification process was significantly reduced compared with that of the non-vitrified oocytes 260 

irrespective of supplementation with either of PEG or SC. The reduced competence for embryo 261 

development was indicated both by a decreased ability of the oocytes to undergo the first cleavage and 262 

the ability of cleaved embryos to reach the blastocyst stage. The reason of this phenomenon remains 263 

unclear. Theoretically, reduced embryo development could be caused by the failure of oocyte nuclear 264 

maturation, cytoplasmic maturation during IVM or the failure of normal fertilization during IVF (Nagai et 265 

al. 2006). However, in previous studies, we have demonstrated that, when immature porcine oocytes 266 

were vitrified in microdrops using the same CPA treatment and warming protocols as presented in this 267 

study, nuclear maturation of oocytes and fertilization were not affected (Somfai et al. 2014,2015). This 268 

suggests that the vitrification process causes sublethal damages in oocytes which are manifested only 269 

after fertilization, during embryo development. The exact mechanism behind this phenomenon remains 270 

to be elucidated. In the present study, instead of microdrop procedure, we used Cryotop as the carrier 271 

for vitrification because it is known to provide excellent cooling/warming rates (Liu et al. 2008; 272 

Spripunya et al. 2010; Liang et al. 2012; Wu et al. 2016). Nevertheless, the results achieved by the use of 273 

Cryotop in the present study were not improved compared with those of our previous reports using 274 

microdrops. Despite of severe reduction in blastocyst development after vitrification at the immature 275 

stage, irrespective of SC and PEG, some oocytes could develop to the blastocyst stage after IVF with cell 276 

numbers similar to those detected in the non-vitrified control. In other words, the quality of resultant 277 

blastocysts was the same as those of the control. These results are in accordance with those of our 278 

previous results (Somfai et al. 2010, 2013, 2014, 2015) and it suggests that these oocytes could maintain 279 

or restore the ability to develop to normal blastocysts.  280 
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In conclusion, the present study revealed that supplementation of PEG during vitrification of 281 

immature porcine oocytes did not affect the results in terms of oocyte survival and embryo 282 

development. On the other hand the synthetic ice blocker Supercool X-1000 improved the ability of 283 

surviving oocytes to cleave but not the blastocyst formation rate. Further research will be necessary to 284 

identify the reasons for reduced developmental competence to the blastocyst stage in surviving and 285 

cleaved oocytes. Such knowledge will be essential for the further optimization of the current 286 

vitrification protocol in order to minimize cryoinjuries during vitrification of immature porcine oocytes. 287 
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Tables  413 

Table 1. In vitro embryo development after IVF of cumulus-oocytes complexes vitrified in the presence 
or absence of 2% (w/v) polyethylene glycol (PEG) in equilibration and vitrification solutions. 

Treatment Total Cleaved embryos Blastocyst (Day 6) Total cells 
Groups cultured* (% cultured) (% cultured) (% cleaved) in blastocysts 
Control 204 68.9 ± 2.9a 17.5 ± 3.1a 25.7 ±4.8a 44.1±3.5  

      
Vitrified without PEG 173 22.2 ±5.9b 2.9 ± 1.3b 9.6 ± 8.2b 54.0±9.3  

      
Vitrified with PEG 171 28.1 ± 3.6b 1.9 ±1.1b 11.1 ±3.2b 47.2±9.3  

Data are presented as mean ±SEM. 
Six replications were performed.  
* After vitrification, IVM and IVF only surviving oocytes were subjected to subsequent culture. 
a,b Percentages with different letters in the same column differ significantly (P<0.05). 

 414 
 415 
 416 

Table 2. In vitro embryo development after IVF of cumulus-oocytes complexes vitrified with or without 
1 % (v/v) Supercool X-1000 (SC) addiction in vitrification solution. 

Treatment Total Cleaved embryos Blastocyst (Day 6) Total cells 
Groups cultured* (% cultured) (% cultured) (% cleaved) in blastocysts 
Control 187 69.3± 2.8a 13.3±1.7a 18.9±2.1a 29.9±4.1 

      
Vitrified SC- 200 39.4±5.8b 2.4±0.5b 5.9±1.4b 28.8±7.2 

      
Vitrified SC+ 211 56.4±10.3a 4.8±1.3b 8.9±2.4 b 40.7±8.0  

Data are presented as mean ±SEM. 
5 replications were performed.  
* After vitrification, IVM and IVF only surviving oocytes were subjected to subsequent culture.  
a,b Percentages with different letters in the same column differ significantly. 

 417 
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Figures 419 
 420 

Figure 1. Survival of COCs vitrified in the presence or absence of 2% (w/v) PEG in equilibration and 421 

vitrification solutions. Data are presented as mean ±SEM. Six replications were performed. Total 422 

numbers of oocytes vitrified in group are given in parentheses. Percentages with different letters differ 423 

significantly (P<0.05). VIT/PEG- = COCs vitrified without PEG; VIT/PEG+ = COCs vitrified with PEG. 424 

 425 
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Figure 2. Survival of COCs vitrified in the presence or absence of 1% (v/v) Supercool X-1000 (SC) in 427 

vitrification solution. Data are presented as mean ±SEM. Five replications were performed. Total 428 

numbers of COCs vitrified in group are given in parentheses. Percentages with different letters are 429 

significantly different (P<0.05). VIT/SC- = COCs vitrified without SC; VIT/SC+ = COCs vitrified with SC.  430 
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