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Abstract—Various complex molecular events in oogenesis
cannot be observed in vivo. As a bioengineering technique for
female reproductive tissues, in vitro culture systems for
female germ cells have been used to analyze oogenesis and
preserve germ cells for over 20 years. Recently, we have
established a new methodological approach for the culture of
primordial germ cells (PGCs) and successfully obtained
offspring. Our PGC culture system will be useful to clarify
unresolved mechanisms of fertility and sterility from the
beginning of mammalian oogenesis, before meiosis. This
review summarizes the history of culture methods for
mammalian germ cells, our current in vitro system, and
future prospects for the culture of germ cells.

Keywords—Primordial germ cell, In vitro oocyte growth,

Oocyte preservation.

INTRODUCTION

In mice, primordial germ cells (PGCs) first emerge
at around 7.5 days post-coitum (dpc).27 They are de-
fined by high levels of tissue-nonspecific alkaline
phosphatase activity and/or as Dppa3/PGC7/stella-
positive cells at the base of the allantois.83 PGCs are
specified by Blimp1/Prdm1 and Prdm14 expression
prior to 7.5 dpc.69,104 They migrate into gonads with
the help of chemotaxis factors, such as c-kit/Kit and
kit ligand/Kitl,15,26,110,111 until 10.5 dpc and rapidly
proliferate from approximately 40 to 25,000 in number
between 7.5 and 13.5 dpc.95 During this period, PGCs
become progressively different from their ancestors;
over time, they exhibit the repression of genes char-

acteristic of their neighboring somatic cells,83 repro-
gramming including the erasure of genomic
imprinting,41,61,88,89 and the acquisition of sexual-
ity.1,36,57,84 Consequently, they are ready for oogenesis
or spermatogenesis.

Oogenesis begins with the differentiation of iso-
morphic PGCs into oogonia following sexual differ-
entiation. Mammalian PGCs and oogonia mitotically
divide and reach a maximum number at the fetal stage
(Table 1).5,9,11,29,34,48,49,54,58,64,79,106 In female mouse
embryos, PGCs receive retinoic acid signals from the
adjacent mesonephros and Stra8 expression is then
induced.44,73 STRA8 requires pre-meiotic DNA repli-
cation.6 As a result, PGCs cease proliferation and enter
meiosis at around 14.5 dpc in females, but are arrested
at G1/G0 in the mitotic stage until a few days after
birth in males.55 It has been thought that all oogonia
are destined to enter meiosis in fetal ovaries, after
which more than half of oocytes are lost by apopto-
sis.5,9,64 Surviving oocytes are assembled into primor-
dial follicles. These primordial follicles become
dormant and only a small proportion are activated to
produce fully matured oocytes at the adult stage. The
limited number of mature oocytes represents a disad-
vantage for breeding, reproduction, and scientific
research. Furthermore, the regulatory mechanisms of
mammalian oogenesis remain largely unknown.

In vitro systems have helped elucidate mechanisms
underlying PGC specification, proliferation, and dif-
ferentiation. Recently, we successfully demonstrated
the complete in vitro generation of fertile mouse oo-
cytes from PGCs for the first time.63 Such an in vitro
system is expected to unravel the mechanisms of
oogenesis and preserve female gametes. In this review,
we describe the brief history of the in vitro systems for
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recapitulating germ cell development and summarize
the development and current state of these cutting-edge
techniques for PGC/oocyte culture. We also discuss
potential future applications of our advanced tech-
nique, e.g., for large-scale oocyte production, identifi-
cation of the requirements for fertile oocytes, and
visualization of oogenesis.

HISTORY OF PGC CULTURE IN MICE

Early studies on germ cell culture focused on
determining how mammalian PGCs migrate into go-
nads and subsequently differentiate into oocytes. In the
1980s, Tam and Snow removed small pieces of the
primitive streak containing the future PGCs-fated re-
gion at 6.5 and 7.5 dpc and cultured them in DMEM
on plastic dishes owing to the difficulties in tracing
PGC fate in vivo. The small pieces increased in size
after 24 h of culture, but growth was arrested at 48 h.95

McLaren and colleagues isolated PGCs from female
gonads at 13.5 dpc, and tried to culture them in vitro
without feeder cells. These PGCs survived and pro-
gressed into meiosis, suggesting that female PGCs at
13.5 dpc are committed to enter meiosis, independent
of the gonadal environment.17 Later, it was found that
the culture of isolated PGCs on STO cells (a mouse
embryonic fibroblastic cell line) effectively extends
PGC survival and enables the successful recapitulation
of PGC migration in vitro.19,93 STO cells produce
various key factors for PGC proliferation, such as kit
ligand (also known as stem cell factor (SCF) or steel
factor) and leukemia inhibitory factor (LIF), at around
8.5–11.5 dpc.52 The importance of STO cells for PGC
culture can be explained by the phenotypes and
genotypes in W/W and Sl/Sl mutant mice, which are
sterile because PGCs are incapable of migration into
gonads and proliferation. It was found that the W
locus encodes c-kit/Kit, a receptor for the kit ligand, in
1988 and the Sl locus encodes kit ligands/Kitl, in
1990.15,26,110,111

Recent studies have concentrated on PGC specifi-
cation. Yoshimizu et al. cultured epiblasts from 5.5-
dpc embryos with or without extra-embryonic tissues,
demonstrating that PGC emergence requires extra-
embryonic tissues.107 PGC generation from proximal
epiblasts requires BMP4 from extra-embryonic tis-
sues.45 Breakthrough experiments performed by Saitou
and colleagues have shown that PGC-like cells
(PGCLCs) are successfully differentiated in vitro from
epiblasts of 6.0-dpc embryos in which PGCs are not
specified.68 They found that BMP4 and WNT3 are
indispensable for the activation of Blimp1 and Prdm14
in the posterior part of the proximal epiblast from
which PGCs arise. WNT3 induces T(BRACHYURY)
expression, leading to the activation of Blimp1 and
Prdm14. Both Blimp1 and Prdm14 are transcriptional
repressors essential for the loss of somatic cell fate and
PGC specification.3 After PGC specification, BMP4,
BMP8b, LIF, Kit ligand, and EGF enhance the pro-
liferation of PGCLCs in vitro. PGCLCs exhibit the
erasure of genomic imprinting. Consequently, they
develop into functional sperm following transplanta-
tion to beneath the tunica albuginea of adult testes.68

Interestingly, PGCs proliferate in vitro, but their
growth is arrested at corresponding time points
in vivo.19,28,52,68

In the presence of basic fibroblast growth factor
(bFGF), Kit ligand, and LIF, PGCs are repro-
grammed and acquire pluripotency and infinite pro-
liferation activity.53,78,81 These cells are called
embryonic germ (EG) cells and are no longer equal to
PGCs. Recently, EG cells have also been established
via the activation of serine/threonine kinase AKT,51

trichostatin A, histone deacetylase inhibitor,21 or in-
hibitors of mitogen-activated protein kinase signaling
and of glycogen synthase kinase 3 (2i).47 In vitro sys-
tems to extend PGC proliferation while maintaining
their intrinsic properties, have not been developed to
date.

Culture methods for fetal gonads containing PGCs
have also been established to examine the mechanisms

TABLE 1. The numbers of germ cells in mammalian species.

Species

Estimated maximum total no. of germ cells in the

ovary Estimated total no.

of germ cells in the

ovary at birth

Estimated total no. of

germ cells in the ovary

at puberty ReferencesApprox. no. of germ cells Stage

Mouse (C57BL/6) 15,000 15.5 dpc 7000 3000–5000 11,64

Rat 75,000 18.5 dpc 52,000 5000–10000 9, 49

Human 5 9 106–7 9 106 Midgestation 5 9 105–1 9 106 1.5 9 105–3 9 105 5,29,48

Rhesus monkey – – 4 9 105 – 34

Bovine 2 9 106 Prenatal 1.2 9 105–1.5 9 105 – 106

Sheep 9 9 105 Day 75 of gestation – 30,000–50,000 79

Pig 8 9 105–1.2 9 106 Day 90 of gestation 4.5 9 105 – 58
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of gonadal somatic cell and PGC differentiation. Until
PGCs cease proliferation in vivo, gonadal somatic cells
commit to the sexual differentiation of PGCs. Studies
on the role of gonadal somatic cells in sexual differ-
entiation have shown that the timing of meiotic pro-
gression in the indifferent gonads from 11.5-dpc
embryos is altered by culture with ovaries or testes
from 14.5-dpc embryos on 1% agar on a Nuclepore
filter.12,94 Later, using a gas-liquid interface culture
system in which gonads were cultured on a small block
of 2% agar or on a micropore membrane filter with a
thin layer of culture medium, more precise results were
obtained. The culture of sexually chimeric gonads
produced by the aggregation of XY gonadal somatic
cells and XX germ cells or the opposite combination
showed that the sex of germ cells is committed by
gonadal somatic cells at 11.5–12.5 dpc in males and
12.5–13.5 dpc in females.1 This method also improved
germ cell development, e.g., PGCs in the gonads
obtained from 11.5-dpc female embryos were able to
differentiate into oocytes with diameters of greater
than 60 lm after 23 days of culture.56 However, organ
culture systems have not been designed to enable the
completion of oogenesis or spermatogenesis. In vitro
gametogenesis does not exactly recapitulate events that
occur during gametogenesis in vivo unless fertile
gametes are produced. Eppig et al. successfully cul-
tured newborn ovaries containing non-growing oo-
cytes and the derivative secondary follicles to obtain
mature oocytes, which were able to develop to term
after in vitro fertilization.22 Accordingly, they estab-
lished a system with the potential to precisely recapit-
ulate oogenesis. Ogawa et al. also demonstrated the
cultivation of neonatal testes containing prosper-
matogonia on agar, yielding fertile sperm after intra-
cytoplasmic sperm injection.87 However, the entire
process of either oogenesis or spermatogenesis from
PGCs to mature gametes has not been replicated
in vitro in the 20 years since these studies.

COMPLETION OF MOUSE OOGENESIS IN
VITRO

The production of fertile oocytes from PGCs,
oogonia, or immature oocytes provides a basis for
understanding the mechanisms of oogenesis in coor-
dination with folliculogenesis and for preserving fe-
male gametes. Ovarian somatic cells are essential for
the in vitro recapitulation of oogenesis.39 Ovaries
consist of granulosa cells, theca cells, oocytes, and
stromal cells. They produce numerous cytokines and
steroid hormones to support oogenesis and self-orga-
nization via paracrine and autocrine signaling.72 These
factors have not been comprehensively identified;

accordingly, the culture of ovaries and/or follicles has
been adopted for establishing an in vitro system, rather
than the culture of oocytes alone, without their sur-
rounded follicle cells, in livestock, rodents, nonhuman
primates and humans.4,24,39,92,96

Generally, the developmental ability of oocytes
grown in vitro is limited by long culture times and a
lack of appropriate culture conditions. To overcome
these difficulties, ovarian pieces derived from fetuses or
juveniles are transplanted into adult mice, resulting in
the successful production of larger quantities of high-
quality oocytes from explanted grafts than are
obtained in vitro.91 Several studies have shown that the
xenogenetic transplantation of ovaries into immunod-
eficient mice induces oocyte growth.7,10,60,71 Thus, an
ex vivo strategy may be beneficial when useful fetuses/
animals die prior to birth/puberty or for the recovery
of fertility in ovariectomized cancer patients. Yet, an
ex vivo strategy cannot be used to produce functional
oocytes as effectively as intact ovaries,50 cannot com-
pletely prevent the reintroduction of cancer cells in
patients, and is less appropriate for studies of oogen-
esis because it is blinded to sequential changes in
oogenesis.

Ovarian/follicular culture has been examined
extensively in several mammals. Meiotically mature
oocytes are successfully developed by the culture of
preantral follicles, oocyte-granulosa complexes, or
ovarian pieces in human, bovine, sheep, and
pig.8,14,38,65,70,103 However, in vitro systems have poor
outcomes depending on the length of the culture period
required for the completion of oogenesis. Among
mammals, mouse oocytes with proven fertility have
been successfully produced from early-stage oocytes at
comparably high efficiency in vitro.31,59,62,66 Live
mouse pups have been obtained from the culture of
secondary follicles derived from ovaries of juveniles
and from a 2-step culture of neonatal primordial fol-
licles, i.e., ovarian culture followed by follicle cul-
ture.22,23,31,62,66

Compared to the culture of immature oocytes
embedded in the primordial or secondary follicles, a
greater number of events in oogenesis need to be
achieved in PGC culture.4,24,92,96 For example, prior to
switching from mitosis to meiosis, female germ cells
form cysts via incomplete cytokinesis. Oocytes cysts
are broken after oocytes enter meiosis, and each oocyte
is enclosed by a few flattened granulosa cells to form a
primordial follicle; the first meiosis is then arrested at
the diplotene stage of prophase I. Many studies have
attributed female sterility to abnormalities in meiosis
or follicle formation.85 A complete in vitro system for
recapitulating oogenesis endows oocytes with totipo-
tency and fertility. However, existing methods are not
sufficient to reproduce oogenesis. The resultant oo-
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cytes do not reach the second meiosis or do not acquire
ooplasmic competency to support full-term develop-
ment.18,67,90,109

One issue is the long duration required for organ
culture to produce fertile oocytes, i.e., 4 weeks or
more. The ovaries/gonads are separated from the
vasculature to supply nutrition and hormones from the
mother, placenta, and neighboring/distal organs via
endocrine systems and to support gas exchange.17,56,109

This causes low metabolic activity, degradation of
supporting cells, and low-quality oocytes. Hence, the
culture system needs to be switched to follicle culture
from organ culture after each oocyte is enclosed by
follicular cells. However, applying a 2-step culture
system established for neonatal ovaries to fetal gonads
containing PGCs has not been achieved. Conventional
culture conditions cause hypoplasia of follicles in the
gonads. Consequently, follicles cannot be isolated
from cultured ovaries when the starting point for or-
gan culture is prior to follicle formation in vivo.67,91,109

Even though many oocytes grow in size without being
enclosed by a follicle structure, they never reach the
functionally mature stage. This is a major limitation in
the production of fertile oocytes from PGCs in vitro.
We previously showed that nuclear transfer between
in vivo-derived fully grown oocytes and in vitro-derived
immature oocytes is needed to overcome the incom-
petence of oocytes differentiated from PGCs in vitro.
Some reconstituted oocytes develop to offspring.67

However, a true in vitro system is required because
nuclear transfer experiments mask the essential factors
for the acquisition of oocyte competence and the
mechanisms by which oocytes acquire competence,
similar to ex vivo strategies.

A breakthrough in PGC culture has come from the
findings of Pepling and our studies.16,63 We adapted an
ordinary 2-step culture system, which was established
by Eppig and colleagues, to grow oocytes in newborn
mouse ovaries for PGC culture22,66 (Fig. 1). Mouse
embryonic gonads from 12.5-dpc embryos were cul-
tured for 17 days on a Transwell-COL membrane
within a thin layer of culture medium containing 10%
fetal bovine serum (FBS). The number of isolated
secondary follicles per ovary on day 17 of the culture
was low (average, 6.2 follicles per ovary),63 consistent
with previous results.67,90,109 A histological analysis of
cultured ovaries showed multiple-oocyte follicles and
the failure of each oocyte to be enclosed in the follicle.
These results indicated abnormal follicle formation
and explained the low yield of secondary follicles from
embryonic ovaries (Fig. 2). To improve the failure of
follicle development in the culture, we focused on oo-
cyte cyst breakdown that occurs in the middle of the
culture period. We surmised that the cytokinesis of
oocytes is not completed or is delayed in vitro. Oocyte

cyst breakdown occurs at or just prior to the time when
a single oocyte is surrounded by granulosa cells.76 In
previous reports by Pepling and colleagues, the intro-
duction of estrogen into the organ culture medium
prevented oocyte cyst breakdown in newborn mouse
ovaries.16 Some reports have suggested an association
between follicle formation in fetal ovaries and a de-
crease in estrogen in vivo.105 However, maternal- or
placenta-derived estrogen is completely isolated by
transferring fetal gonads to the in vitro environment.
Therefore, to understand the molecular basis for
abnormalities in follicle formation in vitro, we con-
ducted RNA sequencing (RNA-seq) in fetal-derived
ovaries after 7 days of culture and compared tran-
scripts with those of neonatal ovaries on the corre-
sponding day. An RNA-seq analysis showed that more
than 500 genes are differentially expressed in
in vitro-derived ovaries compared with neonatal ovar-
ies. Interestingly, the most common upstream regula-
tor of these differentially expressed genes was estrogen.
Estrogen binds to estrogen receptor 1 (ESR1), estrogen
receptor 2 (ESR2), and G protein-coupled estrogen 1
(GPER1). ESR1 and ESR2 in the presence of bound
estrogen bind to estrogen response elements (5¢-
AGGTCAnnnTGACCT-3¢) and regulate transcrip-
tion.43 There was no evidence of substantial amounts
of estrogen in the medium or that ESR1 and ESR2
were elevated in the in vitro-derived ovaries. Therefore,
we hypothesized that 1) FBS contains estrogen-like
factor(s) that can bind to ESR1 and/or ESR2, or 2)
FBS contains many materials (e.g., cholesterol) needed
to synthesize estrogen within the ovaries. To test these
hypotheses, gonads from embryos at 12.5 dpc were
cultured in medium supplemented with FBS for
17 days. From day 5 to day 11 when oocyte cyst
breakdown occurs, an antagonist of both ESR1 and
ESR2, ICI 182,780 (ICI), was added, an inhibitor of
the aromatase, anastrozole, was added (unpublished
data), or serum protein substitute (SPS) was added
instead of FBS (Fig. 1). ICI 182,780 is known as ful-
vestrant and is used for breast cancer therapy to min-
imize estrogen activity.82,97 Anastrozole is also used for
breast cancer therapy to inhibit estrogen production.
The number of isolated secondary follicles was dra-
matically higher in the ICI-treated group and moder-
ately higher in the SPS group compared to that in the
FBS group (average, 82.0 follicles per ovary for 10 lM
ICI, 27.2 follicles per ovary for SPS, and 6.2 follicles in
the FBS group). Immunohistochemical analysis
showed that each oocyte was enclosed within the fol-
licle with two or more layers of granulosa cells in the
ICI and SPS groups (Fig. 2). Since anastrozole had no
effect on the number of isolated secondary follicles
(average, 2.3 follicles per ovary, unpublished data) and
their phenotypes, ovaries would not produce excessive
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estrogen in vitro. Furthermore, the addition of estra-
diol to the medium containing ICI or SPS comple-
mentarily decreased the number of secondary follicles
per ovary. Therefore, we concluded that the upregu-
lation of estrogen signaling resulted in abnormal sec-
ondary follicle development in vitro and ICI addition
to the medium for gonadal culture overcame this
abnormality.

We also modified the follicle culture protocol
established by Eppig in 1989.23 Our previous study

showed that polyvinylpyrrolidone (PVP), a high-
molecular-mass compound, improved follicle growth
and survival in vitro in both bovines and mice.37,62

Therefore, we added 2% PVP to the medium for the
follicle culture (Fig. 1). We observed a more striking
impact of PVP on the follicles isolated from
in vitro-derived ovaries than on those from
in vivo-derived ovaries. The survival rate increased by
at least 3 times by the addition of PVP to the medium.
It is not clear why PVP is effective for increasing the

FIGURE 1. Timeline for PGC culture. Our culture system for PGCs is consisted of a gonadal culture and a follicle culture, and
takes a month to obtain matured oocytes from 12.5-dpc embryonic gonads. We examined several culture conditions from day 5 to
day 11: Gonads from embryos at 12.5-dpc embryos were cultured in 10% FBS-containing alpha MEM (FBS group), cultured in 10%
FBS- and 1–10 lM ICI-containing alpha MEM (ICI group), cultured in 10% SPS-containing alpha MEM instead of FBS (SPS group),
and cultured in 10% FBS- and 1–50 lM anastrozole-containing alpha MEM (anastrozole group). ICI group was the best culture
condition to produce secondary follicles in vitro. Secondary follicles appeared in ovaries in vitro by day 17 of culture and were then
isolated from ovaries mechanically for the follicle culture. At day 20, the follicles were treated with 0.1% collagenase, thereafter,
they were cultured for another 9–11 days.
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survivability and growth of follicles. However, dex-
tran, a representative macromolecular substance, has
been used for organ preservation. We speculate that
PVP might play a role in sustaining the structure of
oocyte-surrounding follicle cells, maintaining their
viability and preventing the diffusion of cytokines into
the medium. In fact, PVP increased the mRNA
expression of genes encoding cytokines, such as BMP6,
BMP15, c-kit, and kit ligand, in follicles during cul-
ture.63

Another key to producing fertile oocytes from
PGCs in vitro is collagenase treatment (Fig. 1). When
we isolate secondary follicles from juvenile mice,
ovaries are generally treated with collagenase.23 How-
ever, relatively fewer follicles were isolated after the
collagenase treatment of in vitro-derived ovaries. This
is attributed to the fragility of follicles from
in vitro-derived ovaries and the random cellular
alignment of some (Fig. 2f). We mechanically isolated
secondary follicles, using a fine tungsten needle, and
cultured intact follicles in medium containing 2% PVP.
Follicles were able to grow; however, at the end of
follicle culture, the layer of cumulus cells surrounding
the oocyte was thin. The resultant oocyte could not
develop beyond the 2-cell stage after fertilization.63 In
contrast, collagenase treatment of mechanically iso-
lated follicles exposed oocyte-granulosa cell complexes
to the medium, resulting in an appropriate thickness of
the cumulus cell layer surrounding the oocyte after
follicle culture. The exposure of oocyte-granulosa cell

complexes to the medium might promote gas ex-
change, nutritional intake, and the clearing of waste
products via granulosa cells. The oocytes differentiated
from PGCs in vitro grew to full size (approximately
80 lm in diameter). Oocytes produced by this method
exhibit successful fertilization, the completion of
meiosis, and the acquisition of totipotency. Following
the transplantation of 2-cell embryos in the oviducts of
pseudopregnant mice, two to three pups per cultured
gonad were born using our culture system. Pups from
in vitro differentiated oocytes exhibited normal phe-
notypes and fertility. Oocyte-derived imprinting also
persisted in these pups.63 Thus, a culture system for
recapitulating oogenesis has been developed in a step-
by-step manner.

WIDELY APPLICABLE STRATEGY TO

PRODUCE FERTILE OOCYTES FROM PGCS

Vitrification is a useful technique for germ cell
preservation. It is a kind of cryopreservation that
avoids ice crystal formation by passing the cryohydric
point quickly and therefore minimizes less cell dam-
age.80 Vitrification as an alternative method for cry-
opreservation has been used for the preservation of
oocytes, zygotes, and ovarian tissues in mice, bovines,
humans, and so on.2 In our previous reports, func-
tional oocytes and pups were successfully obtained
from gonads vitrified/warmed following the method

FIGURE 2. Morphology of in vitro grown follicles. (a–d) Immunofluorescence staining of the extracellular matrix. Ovaries derived
from 10-dpn mouse (a), FBS group (b), ICI group (c), and SPS group (d). Each follicle was enclosed by laminin in both ICI and SPS
groups but not in FBS group. Green, laminin; Blue, nuclei. (e–g) Histology sections of ovaries. Secondary follicles in the ovary of
10-dpn mouse (e), FBS group (f), and ICI group (g, h). Alignment of follicular cells was less regular in the ovaries of FBS group.
Flattened theca like-cells attached to oocyte (black arrowheads) in FBS group (f). ICI group, secondary follicles were clearly formed
(g), but the borders of some follicles were not clear (h). Bar 5 50 lm.
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reported by Wang et al.99 In brief, ovaries derived from
12.5-dpc embryos were equilibrated for 20 min in vit-
rification medium containing 10% ethylene glycol,
10% dimethylsulfoxide (DMSO), and 4 mg/ml bovine
serum albumin (BSA) in L15 base medium, and then
for three minutes in 17% ethylene glycol, 17% DMSO,
0.75 M sucrose, and 4 mg/ml BSA. After equilibra-
tion, the gonads were transferred to a cryotube and
vitrified at 2196 �C in liquid nitrogen. A warming
procedure was carried out in 0.5 M sucrose for 3 min
at 37 �C, and for 2 min at room temperature. Then,
the gonads were washed in 0.25 M sucrose, 0.125 M
sucrose, and culture medium, in sequence. Following
warming, the gonads were cultured using our above-
described methods with ICI incorporated in the organ
culture medium, PVP in the follicle culture medium,
and collagenase treatment (Fig. 3). Although the effi-
ciency by which secondary follicles were obtained was
low compared with that for non-vitrified gonads, we
successfully obtained pups from the culture of vitrified/
warmed ovaries.

FUTURE PERSPECTIVES FOR PGC CULTURE

Many key factors determining the growth of oocytes
and follicles have been identified, including kit ligand,
GDF9, BMP4, BMP7, activin, inhibin, EGF, FSH,
and so on.62 Granulosa and theca cells support oocyte
growth by secreting factors, and oocytes also produce
factors for follicle cell differentiation and proliferation.
In our system, the medium contains FBS during the
whole culture period prior to fertilization. We used
alpha-MEM supplemented with ascorbic acid and ICI
for gonadal culture, and ascorbic acid, PVP, and FSH
for follicle culture. When 10% SPS, which consists of
serum albumin and alpha, beta, and gamma globulins,
was used for gonadal culture instead of 10% FBS
throughout organ culture, gonad growth was restricted

and only low-quality follicles with a thin layer of
granulosa cells formed. Knockout serum replacement
had the same effect or was inferior to SPS supple-
mentation. The duration of the development of fertile
oocytes from PGCs is very long, but oocytes do not
undergo renewal. Therefore, the accumulation of tiny
defects leads to a loss of fertility in oocytes. To
establish an in vitro system for recapitulating oogene-
sis, for the first time, FBS cannot be excluded from the
medium.

Eppig et al. established a chemically defined med-
ium for follicle culture. It contains BSA, insulin,
transferrin, selenium, FSH, EGF, and fetuin,22 and has
been adopted for human follicle culture, with some
modifications.103 In 1996, for the first time, the suc-
cessful growth of oocytes capable of developing to
offspring from neonatal ovaries was demonstrated
following a 2-step culture, i.e., ovarian culture with
FBS-containing medium for 8 days and follicle culture
with chemically defined medium for 14 days, as de-
scribed above. Although this was a substantial
achievement, the culture of gonads or ovaries still
requires FBS. Moreover, oocytes produced from
neonatal ovaries by 2-step culture with FBS-containing
medium during the whole period have a greater
potential to develop to term than those produced by
Eppig et al.22,62,66 It is possible that various growth
factors supplied by FBS are necessary in the culture
medium. However, chemically defined medium is
essential for increasing our understanding of the
mechanisms of oogenesis.

In recent studies, PGCLCs have been differentiated
from mouse embryonic stem cells and induced
pluripotent stem (iPS) cells32 and successfully devel-
oped to fertile oocytes in vitro.35 Accordingly, the
complete reconstitution of the process from non-
germline cells to female germ cells can be accomplished
in vitro. Since fertile oocytes can be produced from
mitotically divided cells, such an in vitro system would

FIGURE 3. Vitrified-warmed gonads for production of oocytes. The gonad was cut into two or three pieces, dipped in the
vitrification solution and frozen in liquid nitrogen (LN2). Bright-field images show thawed gonads cultured for 0 and 17 days.
Bar 5 200 lm. A representative isolated follicle is labelled ‘‘isolation.’’ Bar 5 100 lm.
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expand the possibilities of the mass production of
mammalian oocytes, sequential observations of ooge-
nesis, and gene modifications during oogenesis using
genome editing, RNA interference, or transfection
technologies.

A culture system for PGCs has the potential to be
applied to livestock and other mammals, but PGCs in
these taxa are not well-characterized compared to
those of mice. In pigs, the differentiation of PGCLCs
to spermatogonial stem cell-like cells, but not sper-
matozoa, was observed after injection into busulfan-
treated mouse testes.101 It may be possible to obtain
functional oocytes in large animals from PGCs or
PGCLCs; however, optimal culture conditions,
including ICI addition and its concentration, should be
examined in each species and at each age. Even in mice,
there is variation in hormone levels and the timing of
primordial follicle formation among strains.77 In
bovines, estradiol has inhibitory effects on primordial
follicle assembly,105 but promotes follicle formation in
hamsters and baboons.98,100 Thus, although a proto-
type in vitro system to produce functional oocytes from
PGCs and PGCLCs has been established in mice,
further investigation is required for establish a system
that is widely applicable across taxa.

The introduction of our in vitro system to human
PGC culture is impractical. Human PGCs differentiate
into oocytes by 2 months post-conception, and pri-
mordial follicle formation starts by 6 months post-
conception5; therefore, there are no PGCs in adult
ovaries. Recently, PGCLCs have been established
from human iPS cells supplemented with BMP4, LIF,
SCF, and EGF.86 However, differentiation of oocytes
and spermatozoa from PGCLCs currently requires
aggregation with somatic cells from embryonic gonads,
at least in mice.32,33,35 If possible, it might take far
longer to produce mature oocytes from human PGCs/
PGCLCs. Even in follicle culture, it takes over 30 days
to grow small antral follicles from secondary follicles
in vitro,96 and there is no evidence for the development
of human preantral follicles beyond Graafian follicles
in vitro. At all steps, the culture of human PGCs/
PGCLCs to produce mature oocytes raises ethical is-
sues and safety concerns that have not been addressed.

For the last two decades, the existence of oogonial
stem cells (OSCs) in adult ovaries has been a contro-
versial topic. This idea stems from the discrepancy
between the estimated number of oocytes in neonatal
ovaries and the estimated number of ovulated oocytes
and atretic follicles. Johnson et al. indicated that faster
depletion of oocytes in the ovaries would be caused by a
higher number of atretic follicles and ovulated oocytes
if neo-oogenesis does not progress to adulthood.40 An
increasing number of reports has supported the exis-
tence of OSCs in the adult ovaries of mice, rats, bovi-

nes, and humans.20,30,40,46,74 In these reports, OSCs are
collected from adult ovaries by live-cell sorting using
fluorescent- or magnetic-activated cell sorting (FACS
or MACS) with germ cell or stem cell markers, such as
MVH (known as Ddx4).102 Although the ratio of sor-
ted OSCs after FACS or MACS was low in these
studies, OSCs proliferated with the expression of both
germ cell and stem cell markers during culture, and
contributed to oocytes after grafting in ovaries ex vivo.
However, the use of an MVH antibody in a live-cell
sorting assay to detect antigens on the cell surface is
questionable because MVH is a germline-specific RNA
helicase and is believed to exist in the cytoplasm.13,25,108

Several attempts to resolve this issue with the MVH
antibody approach have been reported using an SSEA-
1 antibody or Ddx4-cre transgenic mice.42,75 However,
it is still not clear whether OSCs exist. Our in vitro
system could be used to evaluate whether OSCs exist to
supply new oocytes to adult ovaries without trans-
plantation of OSCs.

Thus, we demonstrated the fertility of mouse oo-
cytes produced from PGCs in vitro. This new
methodological approach has important implications
for female germ cell preservation and studies of every
process involved in mammalian oogenesis.
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