

The investigation of pellicle peelability on Japanese chestnut cultivar of 'Yakko' (Castanea crenata Sieb. et Zucc.)

メタデータ	言語: eng
	出版者:
	公開日: 2019-05-14
	キーワード (Ja):
	キーワード (En):
	作成者: 髙田, 教臣, 西尾, 聡悟, 加藤, 秀憲, 澤村, 豊, 佐藤,
	明彦, 尾上, 典之, 齋藤, 寿広
	メールアドレス:
	所属:
URL	https://repository.naro.go.jp/records/2560
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

- 1 **Title:** The investigation of pellicle peelability on Japanese chestnut cultivar of 'Yakko'
- 2 (Castanea crenata Sieb. et Zucc.)
- 3
- 4 **Author(s):** Norio Takada^{a,*}, Masahiko Yamada^b, Sogo Nishio^a, Hidenori Kato^a, Yutaka
- 5 Sawamura^a, Akihiko Sato^c, Noriyuki Onoue^c, and Toshihiro Saito^a
- 6

7 Author affiliation:

- ⁸ ^a Institute of Fruit Tree and Tea Science, NARO 2-1 Fujimoto, Tsukuba, Ibaraki 305-
- 9 8605, Japan
- ¹⁰ ^b College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa,
- 11 Kanagawa 252-0880, Japan
- ^c Division of Grape and Persimmon Research, Institute of Fruit Tree and Tea Science
- 13 NARO, Akitsu, Higashihiroshima, Hiroshima 729-2494, Japan
- 14
- 15 ***Corresponding author.**
- 16 *E-mail address*: <u>ntakada@affrc.go.jp</u> (N. Takada).

17 Abstract

Japanese chestnuts (Castanea crenata Sieb. et Zucc.) generally have difficult-18 19 peeling pellicles even after heating, making easy-peeling pellicle (EPP) an important 20 breeding target. Recently, EPP cultivars 'Porotan' and 'Porosuke' were released by a 21 government-funded breeding program. However, very few genotypes carry the major recessive gene responsible for the EPP trait, resulting in inbreeding within a narrow 22 gene pool. To discover other genetic materials having the potential for EPP breeding, 23 we evaluated the pellicle peelability of 59 accessions (51 Japanese local cultivars and 8 24 25 wild individuals) by using the high-temperature oil peeling method. We discovered that 26 'Yakko' had an exceptionally high pellicle peelability score (87%), close to that of 27 'Porotan' (94%). The results of segregation ratio analysis of pellicle peelability and genotype prediction by simple sequence repeat (SSR) markers among F₁ seedlings 28 suggested that the EPP alleles of 'Porotan' and 'Yakko' are at the same locus. However, 29 a haplotype structure analysis of the EPP genome region with SSR markers revealed 30 that both haplotypes of 'Yakko' differed from those of 'Porotan', suggesting that the 31 32 EPP gene of 'Yakko' had a different origin from that of 'Porotan' or was inherited from 33 a common ancestor many generations ago.

34

35 Keywords: Japanese chestnut, Breeding, Haplotype, Inbreeding, Pellicle peelability

37 Highlights

38	• Pellicle peelability was evaluated in 59 Japanese chestnut accessions.
39	• The goal was to detect accessions with easily peeled pellicles.
40	• The pellicle peelability of 'Yakko' was exceptionally high.
41	• Peelability of 'Yakko' and 'Porotan' appears to be controlled by the same locus.
42	
43	Abbreviations
44	APR, average peeling rate; DPP, difficult-peeling pellicle; EPP, easy-peeling pellicle;
45	HOP, high-temperature oil peeling; MAS, marker-assisted selection; NARO, National
46	Agriculture and Food Research Organization; NIFTS, Institute of Fruit Tree and Tea
47	Science, NARO; QTLs, quantitative trait loci; SSR, simple sequence repeats

49 **1. Introduction**

There are four major chestnut species: Japanese chestnut (Castanea crenata Sieb. 50 51 et Zucc.), Chinese chestnut (C. mollissima Bl.), European chestnut (C. sativa Mill.), and American chestnut (C. dentata Borkh.). Japanese chestnut is naturally distributed and is 52 53 grown in Japan and the Korean Peninsula, and many local cultivars have been developed in Japan (Pereira-Lorenzo et al., 2012). Chinese chestnut is grown mainly in 54 China. European chestnut is commercially grown in Europe, Asia Minor, and North 55 56 Africa. American chestnut was a common species in eastern North America until the 57 early 20th century, when it was decimated by the accidental introduction of chestnut 58 blight (Woodroof, 1979). Japanese chestnut cultivars are believed to have been selected 59 from wild chestnuts of Japanese origin (Kotobuki, 1994). This hypothesis is supported by the considerable genetic distance between local Japanese chestnut cultivars and 60 61 Chinese chestnut accessions, as determined using amplified fragment length 62 polymorphism markers (Yamamoto et al., 1998). Many cultivars of Chinese chestnut and European chestnut have a pellicle that is 63 easy to peel (hereafter, an easy-peeling pellicle: EPP). In contrast, Japanese chestnut 64 cultivars generally have a pellicle that is difficult to peel (hereafter, a difficult-peeling 65 66 pellicle: DPP), even after heating (Kikuchi, 1948; Miller et al., 1996; Pereira-Lorenzo et 67 al., 2012; Tanaka et al., 1981). The pellicle of Japanese chestnut can be scraped away by hand using a knife, but this is laborious and costly. Thus, releasing new Japanese 68 chestnut cultivars with EPP has been an important target for Japanese chestnut breeding, 69 70 in addition to large nut size, high eating quality, and high productivity. This program 71 started in 1947 at a national level and is currently managed by the Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NIFTS). 72

73	Recently, the breeding program released two Japanese chestnut cultivars with the EPP
74	trait: 'Porotan' in 2006 (Saito et al., 2009) and 'Porosuke' in 2016 (Saito et al., 2017).
75	The area planted to 'Porotan' has been increasing rapidly, reaching 212 ha in 2014. The
76	EPP trait of 'Porotan' is controlled by a single major recessive gene: the pellicle
77	peelability locus has been designated P/p (Takada et al., 2012), and a molecular marker
78	linked to this locus was developed (Nishio et al., 2013). Today, marker-assisted
79	selection (MAS) is available for the EPP trait in cross-derived populations, allowing
80	selection using large seedling populations and eliminating the need to raise the plants
81	until they are old enough to produce nuts, which is laborious and time-consuming.
82	So far, very few genotypes (offspring, selections, or cultivars) have been found to
83	carry the EPP gene. This is a concern because repeated crossing among specific genetic
84	resources within a narrow gene pool results in inbreeding depression, such as decreased
85	tree vigor and productivity, in woody fruit crops, including Japanese pear (Sato et al.,
86	2008) and persimmon (Yamada et al., 1994). This depression has not yet been observed
87	in Japanese chestnut, but based on the results for other tree species, seems likely to
88	develop as breeding progresses. Outcrossing can mitigate or eliminate inbreeding
89	depression by incorporating genes from accessions that are genetically distant from the
90	current cross parents in breeding, thus increasing genetic diversity.
91	Both 'Porotan' and 'Porosuke' are early-maturing cultivars, which results in early
92	cessation of EPP nut production in areas of cultivation and a concentration of harvest
93	dates within a brief period. Therefore, the development of a mid- or late-maturing
94	cultivar with EPP, which would extend the season when fresh nuts are available and
95	give farmers more time to harvest their crops, is a current chestnut breeding target at
96	NIFTS. Kotobuki et al. (1984) suggested that nut harvest time is controlled by

quantitative trait loci (QTLs), and Nishio et al. (2017) detected QTLs for nut harvesting 97 date. Thus, we wish to identify later-ripening Japanese chestnut accessions with some 98 99 level of EPP as cross parents for the breeding of mid- or late-maturing cultivars. 100 In books published about a century ago, Nakaoka (1913), Yagioka (1915), and 101 Tanaka (1933) described local Japanese chestnut cultivars having EPP on the basis of their observations, but they did not report any test results. This suggests that some 102 103 unidentified EPP genotypes might exist among Japanese chestnut genetic resources, 104 including the local cultivars mentioned in those books. Our previous study suggested 105 the possibility of breeding novel EPP cultivars by crossing among DPP accessions with 106 relatively easily peeled pellicles (Takada et al., 2017). Thus, it is necessary to identify 107 accessions with relatively high pellicle peelability for breeding novel EPP cultivars. The objective of this study was to discover Japanese chestnut accessions with the EPP trait 108 or with relatively high pellicle peelability by surveying 59 Japanese chestnut accessions 109 110 that were not included our previous study (Takada et al., 2017).

111

112 **2. Materials and methods**

113 2.1. Pellicle peelability of 51 local cultivars and 8 wild individuals

We tested a total of 59 Japanese chestnut accessions, consisting of 51 local cultivars and 8 wild individuals, and used 'Porotan' as the standard for the EPP trait (Table 1). We grew one tree per accession at NIFTS, in Tsukuba, Ibaraki (36°02′56″N, 140°05′56″E), Japan. The pellicle peelability of each accession was evaluated in either 2004 or 2007 (Table 1). All trees were grown following standard cultural techniques used in commercial production in Japan.

120	The harvest day for each accession was the first day that ≥ 10 nuts could be
121	harvested. In 2004, it ranged from 25 August for 'Yamaguchiwase' to 6 October for
122	'Daihachi', 'Katayama', and 'Kinshiu'. In 2007, it ranged from 22 August for
123	'Hassaku', 'Tanabata', and 'Toyotamawase' to 17 October for 'Choubei' and
124	'Shimokatsugi'. Among the 33 accessions harvested in 2004, 24 were harvested again
125	in 2007. The average harvest day of these 24 accessions was 18 September in 2004 and
126	27 September in 2007. Although there was a difference of about 10 days in mean
127	harvest day between the two years, the relative maturities of the accessions were similar
128	in each of the two years. Nuts were harvested after the bur opened and were then stored
129	at 5 °C for 1 month.

Ten nuts per accession were randomly used to evaluate pellicle peelability. For 130 accessions harvested in both 2004 and 2007, peelability was assessed only in 2004. 131 After the shells were removed, the nuts were fried in canola oil at 190 °C for 2 min (the 132 high-temperature oil peeling [HOP] method; Shoda et al., 2006). The pellicle peelability 133 134 of each nut was then determined by means of hand-peeling with a paring knife and was 135 scored by visual estimation of the percentage of the surface area that peeled away 136 without scraping ("peeling rate"), on a scale graded in 10% increments, where "0%" represents 0%, "5%" represents 0% < and $\leq 10\%$, "15%" represents 10% < and $\leq 20\%$, ... 137 "85%" represents 80% < and $\leq 90\%$, and "95%" represents 90% < and $\leq 100\%$ (Takada et 138 139 al., 2017). Pellicle peelability was quantified as the average peeling rate of 10 nuts per 140 genotype evaluated (APR; %). The accessions with APR values \geq 75% were classified 141 as EPP; those with APR <75% were considered DPP.

142

143 2.2. Inheritance of pellicle peelability of 'Yakko'

144	As described in Results, 'Yakko' had an exceptionally high APR value relative to
145	the other accessions, suggesting that it has a major EPP gene. To test whether the mode
146	of inheritance of pellicle peelability of 'Yakko' was the same as that of 'Porotan', we
147	examined the segregation ratio of pellicle peelability among F_1 seedlings of crosses
148	made using 'Yakko' as a parent. We crossed 'Porotan' $(p/p) \times$ 'Yakko' in 2006 and
149	2010, and 'Tanzawa' (P/p) × 'Yakko' in 2005 and 2006. 'Tanzawa' was previously
150	shown to be heterozygous for the p allele found in 'Porotan' (Takada et al., 2012;
151	Nishio et al., 2013). Two-year-old offspring were planted in a space of 2 m \times 5 m in the
152	NIFTS orchard. Nuts were harvested from each seedling of 'Tanzawa' \times 'Yakko' in
153	2011 and of 'Porotan' \times 'Yakko' in 2013 after the bur opened and stored at 5 °C for 1
154	month. Ten nuts from each seedling were randomly evaluated for pellicle peelability by
155	the HOP method as described in section 2.1. As above, seedlings having average APR
156	values of \geq 75% were regarded as EPP. The segregation ratio of pellicle peelability for
157	the seedlings of 'Tanzawa' \times 'Yakko' was tested by the chi-square goodness-of-fit test
158	for the hypotheses of a 1:1 segregation ratio.

159

160 2.3. Association between pellicle peelability and genotype estimated by simple sequence 161 repeat markers

Because 'Yakko' had an exceptionally high APR value, similar to that of 162 163 'Porotan', we hypothesized that both cultivars had the same p/p genotype. Thus, we estimated the pellicle peelability genotypes of F₁ seedlings derived from 'Tanzawa' 164 $(P/p) \times$ 'Yakko' (described in section 2.2) by determining which allele from 'Tanzawa' 165 was present in each seedling. Two simple sequence repeat (SSR) markers closely linked 166

to the P/p locus of 'Tanzawa' (PRB28 and PEB62; Nishio et al., 2013) were used to genotype each seedling.

169	Genomic DNA was extracted from young leaves or young buds using a DNeasy
170	Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions.
171	Polymerase chain reaction products were separated and detected with a 3130xl Genetic
172	Analyzer (Life Technologies, Carlsbad, CA, USA). The size of each amplified band was
173	determined by comparison with a set of internal standard DNA fragments (400HD-ROX,
174	Life Technologies) in GeneMapper v. 5.0 software (Life Technologies).
175	
176	2.4 Haplotype structure around the P/p locus of 'Yakko' and 'Porotan'
177	To determine the haplotype structure around the P/p locus of 'Yakko' and
178	'Porotan', we investigated an F_1 population derived from 'Porotan' \times 'Yakko'
179	(described in section 2.2). Genomic DNA was extracted as in section 2.3. The seedlings
180	were genotyped using 10 SSR markers associated with the P gene locus (PEA18,
181	PEA41, PEB62, PEB102, PRA51, PRB25, PRB28, PRD2, PRD52, PRD58; Nishio et
182	al., 2013). The size of each amplified band was determined as described in section 2.3.
183	The order and spacing of the markers were obtained from Nishio et al. (2013).
184	The fragment sizes of SSR markers PRA51 and PRB25 were 19 bp and 20 bp
185	larger, respectively, than those reported previously (Nishio et al., 2013). These size
186	differences are explained by a change in the forward primers from M13-tailed primers
187	(Schuelke, 2000) to fluorescently labeled primers. In addition, since the DNA sequencer
188	was changed from a PRISM 3100 DNA sequencer (Applied Biosystems, Carlsbad, CA,
189	USA) to a 3130xl Genetic Analyzer, a difference of 1 bp was found in some markers
190	(PRD2, PRB28, PEB62, PRD58) relative to the results of Nishio et al. (2013).

192 **3. Results**

193 3.1. Pellicle peelability of 51 local cultivars and 8 wild individuals

The APR of the 59 accessions and 'Porotan' ranged from 7.0% in 'Katayama' to 94.0% in 'Porotan' (Table 1). The frequency distribution of the APR values was continuous in the 58 accessions with APR < 75% (Fig. 1). 'Porotan' and 'Yakko' had exceptionally high APR values, which were discontinuous with those of the other

accessions (Fig. 1). The APR value of 'Yakko' was 87.0% and close to that of 'Porotan',

and only these two cultivars were classified as EPP. The mean APR value of the 58

200 DPP accessions was 43.3%. Among the DPP accessions, only 'Otomune' (72.0%),

'Fukunami' (71.0%), and Shibaguri-166 (71.0%) had APR values of \geq 70% (Table 1).

202

203 3.2. Inheritance of pellicle peelability of 'Yakko'

In a population of 16 F_1 offspring of the cross of 'Porotan' $(p/p) \times$ 'Yakko',

205 pellicle peelability segregated in a ratio of 14 EPP to 2 DPP (Fig. 2). The two DPP

206 offspring had APR values of 59.0% and 61.0%. This segregation ratio was close to the

207 expected ratio of 1:0 for the progeny of parents homozygous for recessive alleles at the

same locus. In a population of 17 F₁ offspring from 'Tanzawa' (P/p) × 'Yakko', pellicle

209 peelability segregated in a ratio of 6 EPP to 11 DPP (Fig. 2). The hypothesis of 1:1

segregation, as expected from a cross of a heterozygous parent by a homozygous

211 recessive parent, was not rejected at P < 0.05.

212

213 3.3. Association between pellicle peelability and genotype estimated by SSR markers

214	On the assumption that 'Yakko' has the same p/p genotype as 'Porotan', we
215	estimated the genotypes of 17 F_1 offspring from Tanzawa' × 'Yakko' by using SSR
216	markers PRB28 and PEB62 and then compared the estimated genotypes with the APR
217	scores. The segregation was estimated as 7 offspring with the p/p genotype and 10 with
218	the P/p genotype, including one recombinant genotype that was judged to be P/p owing
219	to its very low APR value (3%). When these data were compared to the phenotypes, 6
220	of the 7 seedlings estimated as having the p/p genotype had APR $\ge 75\%$ and were
221	classified as EPP (Fig. 3). The remaining seedling estimated as having the p/p genotype
222	had $APR = 60.0\%$ and was classified as DPP. All 10 seedlings estimated as having the
223	P/p genotype had APR < 29% and were classified as DPP (Fig. 3). The mean APR
224	values were 17.4% for the estimated P/p genotypes versus 83.7% for the estimated p/p
225	genotypes, indicating that the pellicle peelability of seedlings with the p/p genotype (as
226	estimated by SSR) was much higher than that of seedlings with the P/p genotype.
227	
228	3.4. Haplotype structure around the P/p gene locus of 'Yakko' and 'Porotan'
229	Overall, the two haplotypes of SSR markers around the P/p locus of 'Yakko'
230	showed different structures from those of 'Porotan' (Fig. 4). In the region between
231	markers PEB62 and PEA41, all of which lie on the same side of the P/p locus, one
232	haplotype of 'Yakko' showed the same structure as both haplotypes of 'Porotan'.
233	However, on the other side of the P/p locus, between markers PRD2 and PRD52, the
234	SSR marker haplotypes differed between 'Porotan' and 'Yakko', as well as within each
235	of the accessions.

4. Discussion

238	Japanese chestnut cultivars generally have DPP traits, but nearly a century ago,
239	pellicle peelability was described in some local cultivars as EPP or relatively EPP.
240	Cultivars 'Shimokatsugi' (Nakaoka, 1913), 'Akaguri', 'Choubei', 'Imakita', 'Kenaga',
241	'Mikado', 'Shimokatsugi', 'Shougatsu', 'Wasa' (Yagioka, 1915), 'Akaguri', 'Gora',
242	'Gosha', 'Ideno', 'Terai', 'Teteuchi', 'Yakko', and 'Wasa' (Tanaka, 1933) were
243	described as EPP or relatively EPP, but these descriptions provided no supporting data.
244	These cultivars were not grown widely, probably owing to low productivity, small nuts,
245	or other undesirable characteristics. Ten of these cultivars (all except 'Akaguri', 'Ideno',
246	'Mikado', and 'Wasa') are conserved at NIFTS. At the time of the present study,
247	'Imakita' and 'Shougatsu' had already been classified as DPP (APR = 41.0% and 35.0% ,
248	respectively; Takada et al., 2017), so they were not retested here.
249	We evaluated the pellicle peelability of 7 local cultivars ('Choubei', 'Gora',
250	'Gosha', 'Kenaga', 'Shimokatsugi', 'Teteuchi', and 'Yakko') from among the 14
251	cultivars previously described as EPP or relatively EPP. In two cases, cultivars
252	considered to be synonymous were used. In the first case, 'Kenaga', introduced by
253	Yagioka (1915), is considered synonymous with 'Kenagaginyose', which is conserved
254	at NIFTS. Similarly, 'Teteuchi', introduced by Tanaka (1933), seems to be synonymous
255	with cultivar 'Ogawateteuchi', which is conserved at NIFTS, because both cultivars
256	originated in Ogawa village in Hyogo prefecture. Among these cultivars, the APR
257	values were all less than 55% except for 'Yakko', which was 87.0% (Table 1). Thus,
258	only 'Yakko' was selected as having the EPP trait among this group of old cultivars.
259	According to the database of NARO Genebank, this cultivar has intermediate tree vigor,
260	intermediate nut size, and high eating quality. Since these 14 cultivars cited about a
261	century ago included 1 EPP cultivar, another might be hidden among the 5 cultivars that

262 were not evaluated in this study or by Takada et al. (2017). One of these, 'Terai', is included in the NIFTS collection and should be evaluated for pellicle peelability. The 263 264 four cultivars that are not conserved at NIFTS will have to be acquired by exploration. In our previous study (Takada et al., 2017), the high and continuous variation of 265 266 the APR values among the DPP accessions suggested the existence of quantitative gene effects on pellicle peelability. This indicates the possibility of developing novel EPP 267 cultivars by accumulating QTLs for more easily peeled pellicle among the DPP 268 269 accessions with relatively high APR values. In a previous study, 70.0% (Shibaguri-37) was the highest APR value among the DPP accessions (Takada et al., 2017). In the 270 271 present study, 'Fukunami', 'Otomune', and Shibaguri-166 had $APR \ge 70\%$, like 272 Shibaguri-37. These accessions can be considered as cross parents for attempts to breed novel EPP cultivars. To develop such cultivars efficiently, it will be necessary to clarify 273 the mode of inheritance and to perform QTL analysis on the pellicle peelability of these 274 275 accessions. The segregation of the APR values in the F_1 seedlings of 'Porotan' \times 'Yakko', 276

most of which were EPP, suggested that both 'Porotan' and 'Yakko' were homozygous 277 278 for recessive alleles at the same locus (i.e., both p/p). As noted, however, there were two exceptional DPP offspring (Fig. 2). APR values have considerable environmental and 279 non-genetic variability (Takada et al., 2017); thus, the small sample size (10 nuts) may 280 explain the two-exceptional offspring. The distribution of the APR values in offspring 281 from 'Tanzawa' × 'Yakko' suggests a bimodal distribution with peaks corresponding to 282 EPP and DPP but also showing environmental and non-genetic variability. 'Tanzawa' 283 284 has genotype P/p (Takada et al., 2012), and the approximately 1:1 segregation in the F₁

progeny of 'Tanzawa' × 'Yakko' supports the hypothesis that 'Yakko' has a p/pgenotype at the same EPP locus as in 'Porotan' and 'Tanzawa' (Fig. 2).

287 Consistent with the assumption that the genotype of pellicle peelability in 'Yakko' is p/p, the seedlings from 'Tanzawa' × 'Yakko' that inherited the p allele of 'Tanzawa' 288 were EPP, with one exception, and all of those that inherited the *P* allele of 'Tanzawa' 289 were DPP (Fig. 3). The result also shows that EPP in 'Yakko' is controlled by the same 290 locus as in 'Porotan' (which is the same as that in 'Tanzawa'). The SSR markers closely 291 linked to the p gene of 'Porotan' (Nishio et al., 2013) should also able to predict the p 292 gene of 'Yakko' (Fig. 4), although the specific marker alleles would sometimes differ. 293 294 In practical use, these SSR markers would be highly effective in MAS of the pellicle 295 peelability trait in 'Yakko' in addition to that of 'Porotan' and its relatives. The APR values were also influenced by quantitative minor effects responsible for genetic 296 variation in DPP cultivars. The low APR values in the F_1 seedlings of 'Tanzawa' \times 297 298 'Yakko' with the P/p genotype (Fig. 3) may be partly due to quantitative gene effects specific to 'Tanzawa' and 'Yakko'. 299

The crossing data indicate that it is highly possible that 'Yakko' has the same p 300 301 allele at the P/p locus as 'Porotan'. However, the two SSR marker haplotypes around the P/p locus of 'Yakko' showed somewhat different structure from those of 'Porotan' 302 (Fig. 4). A previous study indicated that the recessive p allele in 'Porotan' was derived 303 from 'Higan', a local cultivar in Kyoto Prefecture, in central Japan (Nishio et al., 2014). 304 305 'Yakko' is a local cultivar from the northern part of Osaka Prefecture, which is adjacent to Kyoto Prefecture. Thus, some genetic relationship possibly exists between 'Yakko' 306 and 'Higan', although no parent-offspring relationship was detected between them 307 (Nishio et al. 2014). If so, the *p* allele may have originated in a common ancestor many 308

generations ago, and the haplotypes may have changed owing to recombination over
time. Another possibility is that the *p* allele of 'Yakko' arose by mutation independently
from that of 'Higan' and 'Porotan'. These questions may be answered by future DNA
sequencing of the EPP gene. So, it is suggested that the EPP alleles of 'Porotan' and
'Yakko' are at the same locus but the EPP gene of 'Yakko' had a different origin from
that of 'Porotan' or was inherited from a common ancestor many generations ago.

315 Nishio et al. (2014) identified 'Yakko' and 'Kanotsume' as a parent-offspring pair. The APR value of 'Kanotsume' was 57.0% in this study, which suggests that it has 316 317 the P/p genotype (assuming that 'Yakko' has the p/p genotype at this locus). In addition, 318 'Kanotsume' and 'Dengorou' are a parent–offspring pair. 'Dengorou' had APR = 39.0%, 319 suggesting that it might have the P/p genotype. Thus, additional Japanese accessions may carry the *p* allele as heterozygotes, and it would be impossible to identify these 320 321 genotypes only from the evaluation of pellicle peelability. Thus, it is important to 322 discover accessions with p alleles by genotyping linked SSR markers among a wider range of genetic resources. For this purpose, developing markers tightly linked to the 323 P/p locus and identifying p alleles of different origins will be necessary. 324

325 Since the development of 'Porotan', only 'Higan' and its relatives have been used at NIFTS for breeding of Japanese chestnut with the EPP trait. Repeated crossing 326 327 among these genetic resources will cause inbreeding, leading to depression of tree vigor 328 and productivity. Our haplotype structure analysis revealed that both EPP haplotypes 329 from 'Yakko' differ from those of 'Porotan', so their EPP alleles may have different origins or an old common ancestor. Additionally, no parent-offspring relationships 330 331 were detected between 'Yakko' and either 'Porotan' or its ancestral cultivar 'Higan' (Nishio et al., 2014). Thus, 'Yakko' and its relatives will be effective as cross parents 332

for avoiding inbreeding depression risks arising from repeated use of 'Higan' and its
relatives in the Japanese chestnut breeding program at NIFTS.

335 Most of the accessions with the p gene derived from 'Higan' have early maturity (e.g., usually around early September). For broadening the nut harvest period of the EPP 336 337 cultivars, making use of breeding materials that combine the EPP trait with later nut harvest times would be desirable. The harvest day of 'Yakko' was 22 September 2004 338 and that of its offspring 'Kanotsume' was 15 September 2004, both later than those of 339 'Higan' (11 September 2007) and 'Porotan' (4 September 2007). Also, the EPP gene 340 region of 'Yakko' can be predicted by the same SSR markers as those used to detect the 341 342 p gene of 'Porotan', which would enable efficient MAS of pellicle peelability in the 343 offspring of 'Yakko' and its relatives. In the breeding of the EPP cultivars, 'Yakko' and 'Kanotsume' would therefore be useful as cross parents to lengthen the harvesting 344 period while also lowering the risk of inbreeding depression. 345

346

347 Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. This research owes a debt to the many persons involved in Japanese chestnut breeding at NIFTS. We are sincerely grateful for their efforts.

352

353 **Declaration of Interest**

354 The authors declare no conflict of interest.

355

356 **References**

- Kikuchi, A. 1948. Chestnut. In: Pomology 1 (In Japanese). Yokendo, Tokyo. pp. 231–
 245.
- 359 Kotobuki, K. 1994. Chestnut. In: Jpn. Soc. Hort. Sci. (ed.). Horticulture in Japan.
- 360 Asakura Publishing Co. Ltd., Tokyo. pp 53–55.
- 361 Kotobuki, K., Y. Machida, Y. Sato, I. Kajiura, and T. Kozono. 1984. Genetics of the
- 362 resistance to the chestnut gall wasp (*Dryocosmus kuriphilus* Yasumatsu), harvest
- date, mean nut weight, and the characteristics of selected clones of chestnut: results
- of the fourth chestnut breeding program. Bull. Fruit Tree Res. Stn. A 11: 43–53 (In
 Japanese).
- Miller, G., D. D. Miller, and R. A. Jaynes. 1996. Chestnuts. In: J. Janick and J. N.
- 367 Moore (eds.). Fruit breeding. Vol. III. Nuts. Wiley, Inc., New York. pp. 99–123
- 368 Nakaoka, A. 1913. Experiment, Cultivation of Tanba chestnut. Yurindou, Tokyo (In
 369 Japanese).
- Nishio, S., H. Iketani, H. Fujii, T. Yamamoto, S. Terakami, N. Takada, and T. Saito.
- 371 2014. Use of population structure and parentage analyses to elucidate the spread of
- native cultivars of Japanese chestnut. Tree Genet. Genomes 10: 1171–1180. DOI
- 373 10.1007/s11295-014-0751-z.
- Nishio, S., N. Takada, T. Yamamoto, S. Terakami, T. Hayashi, Y. Sawamura, and T.
- 375 Saito. 2013. Mapping and pedigree analysis of the gene that controls the easy peel
- pellicle trait in Japanese chestnut (*Castanea crenata* Sieb. et Zucc). Tree Genet.
- 377 Genomes 9: 723–730. DOI 10.1007/s11295-012-0587-3.
- 378 Nishio, S., S. Terakami, T. Matsumoto, T. Yamamoto, N. Takada, H. Kato, Y. Katayose,
- and T. Saito. 2017. Identification of QTLs for agronomic traits in the Japanese

380	chestnut (Castanea	crenata	Sieb. et	t Zucc)	breeding.	Hort. J.	in	press)	. DC)I:

381	10.2503/hortj.OKD-093.
-----	------------------------

- 382 Pereira-Lorenzo, S., A. Ballester, E. Corredoira, G. Bounous, R. Botta, G. L. Beccaro, T.
- L. Kubisiak, M. Conedera, P. Krebs, T. Yamamoto, Y. Sawamura, N. Takada, J.
- 384 Gomes-Laranjo, and A. M. Ramos-Cabrer. 2012. Chestnut. In: M. L. Badenes and
- D. H. Byrne (eds.). Fruit Breeding. Springer Science + Business Media, New York.
 pp. 729–769.
- 387 Saito, T., K. Kotobuki, Y. Sawamura, K. Abe, O. Terai, M. Shoda, N. Takada, Y. Sato,
- 388 T. Hirabayashi, A. Sato, T. Nishibata, Y. Kashimura, T. Kozono, H. Fukuda, K.
- 389 Kihara, K. Suzuki and M. Uchida. 2009. New Japanese chestnut cultivar 'Porotan'.
- Bull. Natl. Inst. Fruit Tree Sci. 9: 1–9 (In Japanese with English abstract).
- 391 Saito, T., N. Takada, Y. Sawamura, S. Nishio, T. Hirabayashi, A. Sato, H. Kato, N.
- Onoue, and M. Uchida. 'Porosuke', a new Japanese chestnut cultivar. 2017. Hort.
 Res. (Japan) 16 (Suppl. 1): 282 (In Japanese).
- 394 Sato, A., Y. Sawamura, N. Takada, and T. Hirabayashi. 2008. Relationship between
- inbreeding coefficients and plant height of 1-year-old seedlings in crosses among
- Japanese pear (*Pyrus pyrifolia* Nakai) cultivars/selections. Sci. Hort. 117: 85–88.
- 397 DOI: 10.1016/j.scienta.2008.03.005.
- 398 Schuelke, M. (2000) An economic method for the fluorescent labeling of PCR
- fragments. Nature Biotechnol. 18: 233–234.
- 400 Shoda, M., N. Takada, T. Saito, Y. Sawamura and K. Kotobuki. 2006. A method for
- 401 quickly removing pellicles from chestnuts by deep frying cooking oil. Bull. Natl.
- 402 Inst. Fruit Tree Sci. 5: 21–27 (In Japanese with English abstract).

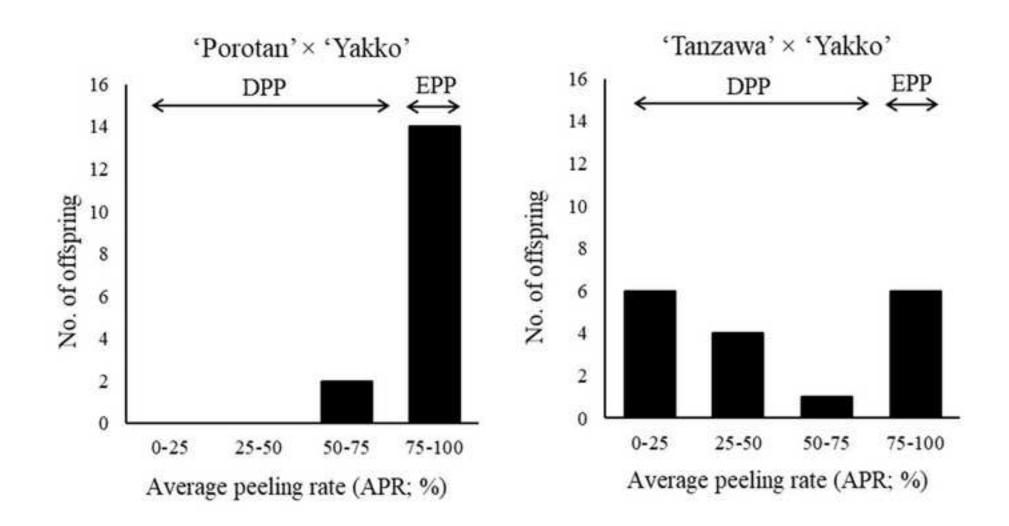
403	Takada, N., S. Nishio, M. Yamada, Y. Sawamura, A. Sato, T. Hirabayashi, and T. Saito.
404	2012. Inheritance of easy-peeling pellicle trait of Japanese chestnut cultivar Porotan.
405	HortScience. 47: 1–3.
406	Takada, N., M. Yamada, S. Nishio, Y. Sawamura, A. Sato, N. Onoue, and T. Saito.
407	2017. Existence of genetic differences in pellicle peelability in Japanese Chestnut
408	(Castanea crenata Sieb. et Zucc.) cultivars and selections with difficult-peeling
409	pellicles. Hort. J. 86: 456-462. DOI: 10.2503/hortj.OKD-030.
410	Tanaka, K., K. Kotobuki, and N. Kakiuchi. 1981. Numerization of peeling easiness and
411	role of phenolic compounds of the pellicle in the adhesion between the pellicle and
412	embryo in comparison of Japanese (Castanea crenata Sieb. et Zucc.) and Chinese
413	(Castanea mollissima Blume) chestnuts. J. Japan. Soc. Hort. Sci. 50: 363-371.
414	Tanaka, Y. 1933. Cultivation of chestnut. Meibundou, Tokyo (In Japanese).
415	Woodroof, J. G. 1979. Tree Nuts: Production Processing Products (Second Ed.). AVI
416	Publishing Company, ING, Connecticut.
417	Yagioka, S. 1915. Cultivation of chestnut. Dainihon nougyo syoreikai, Tokyo (In
418	Japanese).
419	Yamada, M., H. Yamane, and Y. Ukai. 1994. Genetic analysis of Japanese persimmon
420	fruit weight. J. Amer. Soc. Hort. Sci. 119:1298-1302.
421	Yamamoto, T., T. Shimada, K. Kotobuki, Y Morimoto, and M. Yoshida. 1998. Genetic
422	characterization of Asian chestnut varieties assessed by AFLP. Breed. Sci. 48: 359-
423	363.
424	

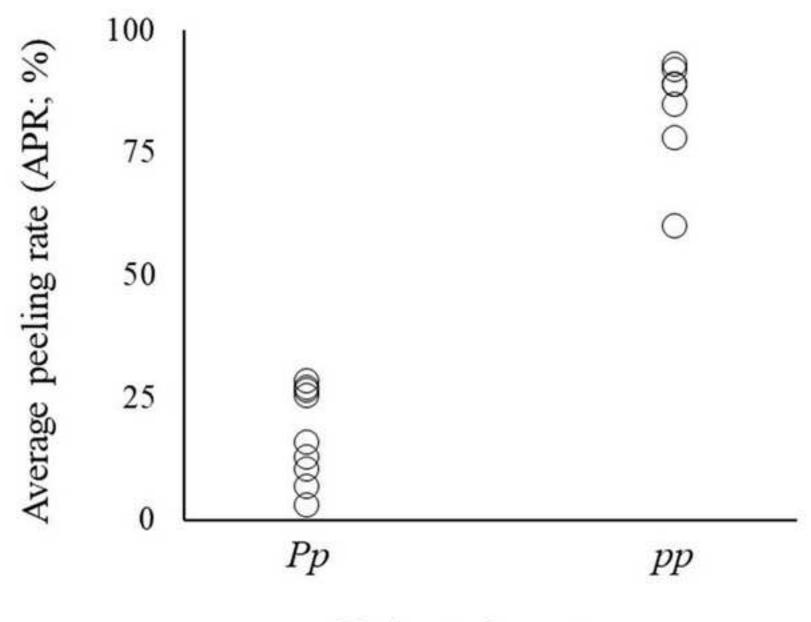
425	Fig. 1. Frequency distribution of the average peeling rate (APR; %) of 10 nuts per
426	accession evaluated by the high-temperature oil peeling method among 59 accessions
427	and 'Porotan'. Values falling at the edges of two adjacent bins were classified into the
428	lower bin (e.g., an APR of 15% would be classified into the "10–15" bin).
429	
430	Fig. 2. Frequency distribution of the average peeling rate (APR; %) of 10 nuts per
431	offspring evaluated by the high-temperature oil peeling method among offspring of F_1
432	crosses of 'Porotan' $(p/p) \times$ 'Yakko' (left) and 'Tanzawa' $(P/p) \times$ 'Yakko' (right). EPP,
433	easy-peeling pellicle; DPP, difficult-peeling pellicle.
434	
435	Fig. 3. Scatterplot of average peeling rate (APR; %) of the two genotypes estimated by
436	SSR analysis among 17 F ₁ offspring of 'Tanzawa' (P/p) × 'Yakko'. Estimation was
437	based on the assumption that 'Yakko' has the same p/p genotype as 'Porotan'. APR was
438	assessed in 10 nuts per offspring by the high-temperature oil peeling method.
439	
440	Fig. 4. Haplotype structure around the EPP genes in 'Yakko'. That of 'Porotan' was
441	determined by Nishio et al. (2013). Numbers indicate allele size (bp). Genetic distances
442	from PRD2 were inferred from an integrated map of the 550-40 \times 'Tanzawa' F_1
443	population (Nishio et al., 2013).

Table 1

Cultivar or accession name	JP acc. No. ^y	Origin (prefecture)	Harvest day ^x	APR (%)
Local cultivars				
'Arima'	113832	Kanagawa	8 Sep. 2004	45.0
'Bonguri'	113834	Japan ^w	28 Aug. 2007	38.0
'Buzen'	113836	Oita	22 Sep. 2004	32.0
'Choubei'	113838	Kyoto	17 Oct. 2007	25.5
'Choukouji'	113839	Hyogo	30 Sep. 2004	29.0
'Daihachi'	113841	Kyoto	6 Oct. 2004	30.0
'Dengorou'	113842	Akita	22 Sep. 2004	39.0
'Enanishiki'	113843	Gifu	28 Aug. 2007	62.0
'Fukunami'	113844	Kyoto	25 Sep. 2007	71.0
'Fukunishi'	113845	Osaka	15 Sep. 2004	30.0
'Ginyose'	113849	Osaka	20 Sep. 2007	48.0
'Gora'	113850	Hyogo	30 Sep. 2004	29.0
'Gosha'	113851	Kanagawa	22 Sep. 2004	54.0
'Hajikami'	113852	Japan	1 Sep. 2004	19.0
'Hassaku'	113853	Japan	22 Aug. 2007	42.0
'Hatayaooguri'	113854	Akita	30 Sep. 2004	24.0
'Hayadama'	113855	Wakayama	19 Sep. 2007	50.0
'Higan'	113856	Kyoto	11 Sep. 2007	60.0
'Hokugin'	113857	Gifu	11 Sep. 2007	57.0
'Ichikawawase'	176782	Kanagawa	19 Sep. 2007	38.0
'Kanotsume'	113867	Kyoto	15 Sep. 2004	57.0
'Kasaharawase'	113868	Gifu	11 Sep. 2007	55.0
'Katayama'	113869	Gifu	6 Oct. 2004	7.0
'Kenagaginyose'	113870	Osaka	8 Sep. 2004	26.0
'Kinseki'	113872	Hyogo	22 Sep. 2004	52.0
'Kinshiu'	113873	Tokushima	6 Oct. 2004	28.0
'Matabei'	113876	Kyoto	30 Sep. 2004	14.0
'Ninomiya'	176780	Chiba	30 Sep. 2004	50.0
'Obiwase'	113878	Miyazaki	28 Aug. 2007	46.0
'Obuse 2 gou'	113879	Nagano	2 Oct. 2007	65.0
'Obuse 3 gou'	113880	Nagano	22 Sep. 2004	20.0
'Ogawateteuchi'	113882	Hyogo	11 Sep. 2007	26.0
'Ookoma'	116299	Japan	15 Sep. 2004	35.0


Table 1. Harvest day and average peeling rate (APR)^z of the 60 Japanese chestnut genotypes used in
 these experiments.


Cultivar or accession name	JP acc. No. ^y	Origin (prefecture)	Harvest day ^x	APR (%)
'Osaya'	113884	Kanagawa	28 Aug. 2007	64.0
'Otomune'	113885	Hyogo	19 Sep. 2007	72.0
'Saimyouji 1 gou'	176786	Akita	2 Oct. 2007	24.5
'Saimyouji 2 gou'	176787	Akita	19 Sep. 2007	18.0
'Shimokatsugi'	113894	Osaka	17 Oct. 2007	54.0
'Shuuhouwase'	113895	Yamaguchi	11 Sep. 2007	66.0
'Taishouwase'	113897	Kanagawa	28 Aug. 2007	55.0
'Tajiriginyose'	113898	Osaka	15 Sep. 2004	30.0
'Tamanishiki'	113900	Japan	11 Sep. 2007	51.0
'Tanabata'	113901	Shizuoka	22 Aug. 2007	58.0
'Toyotamawase'	113907	Tokyo	22 Aug. 2007	30.0
'Tsuchidawase'	113908	Gifu	25 Sep. 2007	35.0
'Tsunehisa'	113910	Kanagawa	4 Sep. 2007	67.0
'Waseginzen'	113919	Japan	1 Sep. 2004	56.0
'Yakko'	113913	Osaka	22 Sep. 2004	87.0
'Yamaguchiwase'	113914	Hyogo	25 Aug. 2004	41.0
'Yamaguchiwase 2 gou'	113915	Tokushima	1 Sep. 2004	16.5
'Yourou'	113917	Gifu	9 Oct. 2007	33.0
Wild individuals				
Sandoguri Kouchi 2	113971	Kouchi	30 Sep. 2004	63.0
Shibaguri-67	113888	Hyogo	22 Sep. 2004	39.0
Shibaguri-82	176797	Hyogo	22 Sep. 2004	56.0
Shibaguri-91	113889	Hyogo	22 Sep. 2004	57.0
Shibaguri-166	113890	Hyogo	15 Sep. 2004	71.0
Shidareguri-Gifu	113892	Gifu	15 Sep. 2004	51.0
Shidareguri-Tatsuno 2	234092	Nagano	15 Sep. 2004	42.0
Shidareguri-Tochigi	113937	Tochigi	8 Sep. 2004	56.0
Cultivar				
'Porotan'	230435	F_1 of 550-40 × 'Tanzawa'	4 Sep. 2007	94.0


² Average peeling rate (APR; %) of 10 nuts evaluated by the high-temperature-oil peeling method. ^y Accession numbers in the National Agriculture and Food Research Organization (NARO) Genebank (<u>http://www.gene.affrc.go.jp/index_en.php</u>). ^x For accessions harvested in both 2004 and 2007, the 2004 harvest day is shown. For each accession listed, APR was measured in the year indicated. ^w Prefecture is unknown.

5

Figure 1 Click here to download high resolution image

Estimated genotype

	'Yakko'		'Porotan'		Genetic distance (cM)
PRD2	133	133	143	147	
PRA51	270	270	273	268	9.6
PEA18	120	120	120	114	11.8
PEB102	171	171	176	171	11.8
PRB28	125	135	135	133	13.2
PRD52	144	144	150	150	16.6
peeling	p	p	p	p	
PEB62	169	159	169	169	19.8
PRD58	196	210	196	196	20.9
PRB25	157	157	157	157	22.3
PEA41	104	102	104	104	59.6