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A B S T R A C T

Recently developed high-yielding rice varieties with extra-large sink capacity often have unstable grain filling.
Therefore, understanding the factors that limit grain filling is essential for further improvement of rice grain
yield. Because grain-filling is determined by the complex sink–source balance, grain-filling ability is very dif-
ficult to evaluate. In this study, we compared grain-filling-related traits of three high-yielding cultivars with high
sink capacity. We found that the translocation of non-structural carbohydrates (NSC) from stem to panicle during
early ripening and grain filling was significantly lower in Momiroman than in Hokuriku 193 and Teqing,
whereas dry matter accumulation of the whole plant did not differ among the cultivars throughout ripening. The
NSC-components, sucrose and starch were both remained higher in stems of Momiroman than other cultivars.
ADP-glucose pyrophosphorylase (AGPase; EC 2.7.7.27) activity was not enhanced and α-Amylase (EC 3.2.1.1)
and β-Amylase (EC 3.2.1.2) activities were not impeded in the stems. These data suggested lower sucrose
translocation is responsible for lower NSC translocation in Momiroman, rather than too high starch synthesis and
too low starch degradation activities. At early ripening, grain growth of the superior spikelets was slow in
Momiroman even if carbon supply was increased by spikelet-thinning treatments. These results raise the pos-
sibility that low sink strength determines low grain filling in Momiroman, which delays grain growth and de-
creases sucking force of NSC from the stem.

1. Introduction

Rice (Oryza sativa L.) is one of the world’s most important crops, and
its yield must be improved to feed the increasing global population. In
Japan, the demand for high-yielding rice for animal feed has increased;
to match it, many high-yielding cultivars have been developed.
Although they commonly have extra-large sink capacity (total number
of spikelets per unit area× filled grain weight), the grain-filling ability
of different cultivars varies considerably (Yoshinaga et al., 2013).
Chinese high-yielding cultivars, called ‘super rice’, also have unstable
grain filling (Yang and Zhang, 2010).

The poor grain filling of high-yielding rice often occurs in inferior
spikelets, which are located on the secondary branchs in the lower part
of a panicle (Yang and Zhang, 2010; Yoshinaga et al., 2013). Some

studies showed that removing superior spikelets of large-panicle culti-
vars improves grain filling of the inferior ones, suggesting that grain
filling of the inferior spikelets is restricted by the supply of assimilated
carbon (Kato, 2004; Kobata et al., 2013; You et al., 2016). Other studies
suggested that the low starch-synthesis rate of inferior spikelets, caused
by low enzyme activity or hormone imbalances, leads to poor grain
filling (Yang et al., 2006; Wang et al., 2015; Zhang et al., 2012).
Whether the carbohydrate supply (source ability) or starch-synthesis
rate (sink strength) restricts grain filling may depend on the cultivar,
location and field conditions. To understand the grain-filling properties
and factors that limit rice cultivars with high yield potential, it is es-
sential to analyse them in the same environment for further improve-
ment of rice grain yield.

Grain-filling ratio is determined by the complex sink–source
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balance. High sink capacity requires high source ability for stable grain
filling. Because translocation of non-structural carbohydrates (NSC)
from stem to panicle is indispensable for stable grain filling (Yoshida
1972; Okamura et al., 2013), source ability for grain-filling is affected
not only by the ability of carbon assimilation in leaves, but also by that
of carbon translocation from stems to panicles. Therefore, to evaluate
differences in grain filling, we must understand the differences and
relationships of many traits such as sink size, dry matter accumulation
and stem-carbon metabolism.

Momiroman is a Japanese high-yielding cultivar that showed one of
the highest sink capacities but low grain-filling ratio in Tsukubamirai,
Ibaraki, in the Kanto region of Japan (Hirabayashi et al., 2010;
Yoshinaga et al., 2013). Another Japanese high-yielding cultivar Ho-
kuriku 193 (H193) showed the highest yield with a relatively high
grain-filling ratio at the same location (Goto et al., 2009; Yoshinaga
et al., 2013). We compared the grain-filling properties and stem-carbon
metabolism of Momiroman and H193 in terms of the sink–source bal-
ance. We also tested a Chinese high-yielding indica cultivar, Teqing.
Based on these analyses, we deduced the possible factors limiting grain
filling of high-yielding cultivars, which could be a target trait for
achieving high yield potential.

2. Materials and methods

2.1. Plant materials and growth conditions

The rice cultivar Momiroman, H193 and Teqing were planted in the
Yawara experimental paddy field of the National Agriculture and Food
Research Organization (NARO) at Tsukubamirai, Ibaraki, Japan
(36°00′N, 140°02′E, altitude above sea level: 10m) in 2014–2016. The
climate condition was shown in Supplementary Fig. S1. Momiroman
and H193 are Japanese indica-japonica hybrid high-yielding cultivars
and their major genetic backgrounds are assumed to be japonica and
indica, respectively (Yonemaru et al., 2014). Teqing is a Chinese high-
yielding indica cultivar. Seedlings (20–24 days old) were transplanted
on 15 May 2014, 21 May 2015 and 19 May 2016. The plants were
grown at a density of 22.2 hills m−2 (spacing of 15 cm×30 cm), with
one plant per hill. The plot size was 6.50m2 in 2014, 47.25m2 in 2015
and 10.80m2 in 2016. The plots were arranged in a randomized block
design with three replicates, except for two replicates of Teqing in
2014. Controlled-release fertilizer (equal parts LP40, LPs100 and
LP140; JCAM Agri, Tokyo, Japan) containing 16 g Nm−2 was applied
as a basal nitrogen dressing. LP40, LPs100 and LP140 release 80% of
their total nitrogen content within 40, 100 and 140 days, respectively,
after application, at 25 °C. Inorganic fertilizers containing
15 g P2O5m−2 and 15 g K2Om−2 in 2014 and 2015 and 20 g P2O5m−2

and 15 g K2Om−2 in 2016 were applied as a basal phosphorus and
potassium dressing.

2.2. Yield and yield components

At maturity, when approximately 85% of grains became yellow, 20
plants were harvested in 2014 and 40 in 2015 and 2016; plants were
air-dried for more than 2 weeks. The panicles were counted and then
threshed; paddy (whole grains with hull) were weighed. A 30–60 g
aliquot of paddy was separated using a Sample Divider (Fujikinzoku,
Tokyo, Japan) for spikelet counting. Grains were counted on an auto-
counter. Half of the paddy were hulled and weighed to rough (whole)
brown rice yield. Then the rough brown rice was sieved with a grain
sorter with a sieve size of 1.6mm and retained grains were weighed to
calculate actual brown rice yield. A 20–40 g aliquot of retained grains
was counted to calculate 1000-g weight, number of filled spikelets, and
the moisture content was measured using a grain moisture tester
(Riceter f, Kett, Tokyo, Japan). Rough paddy yield, rough brown rice
yield, brown rice yield and 1000-grain weight were adjusted to 15%
(w/w) moisture content. Sink capacity was estimated by multiplying

single grain yield by the number of spikelets per area, assuming all the
spikelets were completely filled (Yoshinaga et al., 2013). Harvest index
was calculated by dividing dry weight of sieved brown rice by shoot dry
weight measured as described below.

2.3. Dry weight and non-structural carbohydrate content

At full heading, at about 20 days after heading (DAH) and at ma-
turity, 10 plants per plot were harvested. The heading date and full-
heading date were defined as the dates when about 50% and 80%,
respectively, of panicles had emerged. The sampling dates for each
cultivar and stage are shown in Supplementary Table S1. Two re-
presentative plants among 10 harvested plants with an average number
of panicles were separated into panicles, leaf sheaths+ culms (stems),
and leaf blades. Those and the other 8 plants were dried on the same
day at 80 °C for at least a week and the dry weights were determined.
The total shoot weight per m2 of the 10 plants was calculated. The
weight of each part was calculated from that of the entire shoot mul-
tiplied by the ratio of the part in the 2 representative plants. These
stems were powdered in a vibrating sample mill (TI-1001, CMT Co.,
Tokyo, Japan) for measurement of stem NSC content. The contents of
starch, sucrose, glucose and fructose in the powdered samples were
measured according to Okamura et al. (2016) with glucoamylase
(Toyobo, Osaka, Japan), an F-kit #716260 (J.K. International, Tokyo,
Japan) and a microplate reader (Sunrise, Tecan, Männedorf, Switzer-
land, or Epoch 2, BioTek, Winooski, VT, USA). The NSC content was
calculated as the sum of the contents of these carbohydrates. The ap-
parent NSC translocation (ΔNSC) is estimated from the difference of
NSC content between full heading and 20 DAH. Apparent translocation
ratio of NSC (Ratio of ΔNSC) was estimated by dividing ΔNSC by NSC
content at Full heading.

2.4. Heading and flower-opening days, and spikelet thinning

We classified spikelets into six groups by their position within a
panicle as follows (see also Supplementary Fig. S2a). First, panicles
were divided into upper and lower parts so that the number of primary
branches was the same (the middle branch was placed in the upper part
when the number of primary branches was odd). Thereafter, spikelets
in each part were divided into (A) those on the primary branch, (B)
those on the secondary branch except its tip and (C) those on tip of the
secondary branch. On 9–13 August 2015, the panicles that had just
started heading were labelled. Immediately after labelling or the next
day, at least five opening spikelets of the upper A group of H193 and
Teqing were marked with colour markers. Two days after labelling,
those of Momiroman were marked. Four days after labelling, the
opening spikelets of the lower B group in the labelled panicles of H193
and Teqing were marked. Six days after labelling, those of Momiroman
were marked. In addition, spikelets in some panicles were thinned out
(Supplementary Fig. S2b, c) by marking three upper A or lower B
opening spikelets on the same primary branch of a labelled panicle and
removing all other spikelets on the same primary branch (spikelets on
the other primary branches remained intact). The numbers of harvested
panicles and grains are shown in Supplementary Table S2.

2.5. Carbohydrate contents and AGPase and amylase activities in stems

On 31 July 2015 (11 days before anthesis) and at 0, 7, 14, 21 and
28 days after spikelet marking (days after anthesis, DAA), the third
internodes from the uppermost internodes and the sheaths of the third
leaves from the flag leaves, which had the highest NSC contents among
elongating internodes in Momiroman and H193 (our unpublished ob-
servations), were harvested, immediately frozen in liquid N2 and
ground under cryogenic conditions in a ShakeMaster Auto (Bio Medical
Science, Tokyo, Japan). Starch, sucrose, glucose and fructose contents
of the ground samples were measured as described in 2.3. ADP-glucose
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pyrophosphorylase (AGPase; EC 2.7.7.27) activity was measured ac-
cording to Okamura et al. (2013). In brief, the extracted proteins were
assayed in a reaction mixture containing 106mM HEPES·NaOH (pH
7.5), 20 mM 3-phosphoglyceric acid, 2 mM ADP glucose, 3.2 mM pyr-
ophosphoric acid, 5 mMMgCl2 and 10mM DTT at 30 °C for 10min. The
amount of glucose 1-phosphate produced by AGPase activity was
measured by the enzymatic method on a microplate reader (Epoch 2,
BioTek). α-Amylase (EC 3.2.1.1) activity was measured according to
Sugimura et al. (2015) using a Ceralpha assay kit (Megazyme, Co.
Wicklow, Ireland). β-Amylase (EC 3.2.1.2) activity was measured ac-
cording to Hirano et al. (2016) using a Betamyl-3 assay kit (Megazyme).
Both methods were slightly modified as follows. Ground samples
(∼100mg) were extracted with the extraction buffer containing 50mM
MOPS-KOH (pH 7.5), 20mM MgCl2, 2 mM CaCl2, 2 mM EDTA, 0.1%
bovine serum albumin, 2% (w/v) polyvinylpolypyrrolidone and 0.1%
(v/v) 2-mercaptoethanol. Samples were centrifuged at 20,000× g for
10min, and 25 μL of the supernatant was combined with 25 μL of
substrate solution containing blocked P-nitrophenyl maltoheptaoside
(BPNPG7) for α-amylase or P-nitrophenyl-β-maltotrioside (PNPβ-G3)
for β-amylase and 100 μL of the reaction buffer containing 50mM so-
dium acetate (pH 7.5), 2 mM EDTA, 0.1% bovine serum albumin and
0.1% (v/v) 2-mercaptoethanol. After 15min, 500 μL of 1% (w/v)
Tris·HCl (pH 8.5) was added and the absorbance was measured at
400 nm on a microplate reader (Epoch 2).

2.6. Distribution of grain weight

At maturity, two panicles from three plots (total six panicles) with
marked upper A spikelets were harvested from each cultivar. Panicles
were freeze-dried in vacuo; marked spikelets were kept for the analysis
of grain growth rate and the other spikelets were divided into six
groups: upper A–C and lower A–C (see Section 2.4). Grains with hull of
each group were weighed individually using an automatic counting and
weighing system (QWCALC, NK-Systems, Aichi, Japan).

2.7. Grain growth rate

At 0, 7, 14, 21 and 28 DAA and at maturity, panicles were harvested
and immediately frozen in liquid N2. The numbers of harvested panicles
and spikelets are shown in Supplementary Table S2. Panicles were

freeze-dried in vacuo, and from the marked spikelets were weighed
individually using QWCALC. The mean grain weight data were fitted to
a flexible sigmoid model considering the flower-opening day as the
moment at which grain growth begins (Yin et al., 2003):
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where W is the grain weight (mg), Wb and Wm are the initial and
maximum grain weights, respectively, t is the time (days after spikelet
opening), te is the end of the growth period and tm is the time when the
maximum growth rate is achieved. Wm (except for those of the inferior
spikelets of Momiroman and Teqing), te and tm were calculated by the
Gauss–Newton method in SAS v. 9.4 software (SAS Institute Inc., Cary,
NC, USA). Grain weight measured on the spikelet-opening day was
considered as Wb. Because the grain weight of Momiroman and Teqing
did not reach a plateau even at maturity, the Wm of the inferior (lower
B) spikelets (Wmi) was calculated from that of the superior (upper A)
spikelet (Wms), Wb of the superior spikelet (Wbs) and Wb of the inferior
spikelet (Wbi):
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2.8. Statistical analysis

Statistical analysis was conducted in R software (R Core Team,
2017). Following analysis of variance (ANOVA) with cultivar and year
as fixed factors, cultivars were compared by Tukey’s test.

3. Results

3.1. Grain yield and yield components

Spikelet number per panicle was higher in Teqing than in
Momiroman and H193 (Table 1). As there was no difference in panicle
numbers among the cultivars, total spikelet number was higher in

Table 1
Yield and yield components.

Year Cultivar Panicle
number
(m−2)

Spikelets
per panicle

Spikelet
number
(×103m−2)

1000-grain
weight (g)

Ratio of filled
grains (%)

Rough paddy
yield (g m−2)

Rough
brown rice
yield
(gm−2)

Brown rice
yield
(g m−2)

Sink capacity
(gm−2)

Harvest
index (%)

2014 Momiroman 213 ± 4 250 ± 9 53.4 ± 1.0 23.1 ± 0.1 54.8 ± 1.5 1103 ± 3 762 ± 6 674 ± 4 1233 ± 28 31.2 ± 0.3
H193 225 ± 8 223 ± 4 50.0 ± 2.2 22.7 ± 0.0 79.9 ± 2.3 1261 ± 47 927 ± 41 907 ± 43 1135 ± 49 37.2 ± 0.4
Teqing 220 ± 18 247 ± 9 54.3 ± 2.6 21.0 ± 0.0 74.6 ± 5.0 1195 ± 31 905 ± 6 848 ± 16 1140 ± 54 41.4 ± 2.5

2015 Momiroman 248 ± 6 174 ± 6 43.1 ± 2.0 22.2 ± 0.6 45.1 ± 2.5 792 ± 53 482 ± 48 434 ± 42 960 ± 67 17.9 ± 2.1
H193 233 ± 5 205 ± 3 47.7 ± 1.3 22.0 ± 0.5 83.7 ± 2.5 1177 ± 47 887 ± 37 880 ± 37 1051 ± 23 33.9 ± 0.5
Teqing 260 ± 9 239 ± 16 62.1 ± 4.0 21.1 ± 0.3 69.8 ± 2.8 1264 ± 31 947 ± 24 911 ± 20 1311 ± 75 44.6 ± 0.2

2016 Momiroman 223 ± 5 228 ± 2 50.8 ± 1.1 24.4 ± 0.3 57.8 ± 1.4 1057 ± 18 756 ± 10 715 ± 10 1238 ± 16 32.9 ± 2.1
H193 202 ± 9 227 ± 17 45.6 ± 1.6 23.1 ± 0.1 85.9 ± 0.6 1176 ± 38 912 ± 29 905 ± 29 1054 ± 40 38.0 ± 1.1
Teqing 210 ± 9 269 ± 11 56.5 ± 0.2 22.5 ± 0.1 73.1 ± 0.6 1247 ± 5 969 ± 7 931 ± 8 1272 ± 0 45.1 ± 2.9

mean Momiroman 228a 217b 49.1b 23.2a 52.6c 984b 666b 608b 1144b 27.3c
H193 220a 218b 47.8b 22.6b 83.2a 1205a 909a 897a 1080b 36.4b
Teqing 230a 252a 57.6a 21.5c 72.5b 1235a 940a 897a 1241a 43.7a

ANOVA Year (Y) ** ** ** ** * ** ** ** n.s. **
Cultivar (C) n.s. ** ** ** ** ** ** ** ** **
Y×C n.s. * ** n.s. * ** ** ** ** **

Ratio of filled grains= filled spikelet number ÷ total spikelet number. Sink capacity= spikelet number× 1000-grain yield÷ 1000. Ratio of unfilled brown rice=weight of brown rice
that passed through the sieve÷ rough grain weight. Harvest index= dry weight of sieved brown rice÷ to dry weight of shoot×100. Values are means ± SE (n=3). Different letters
indicate statistically significant differences between cultivars (P < .05, Tukey’s test). *P < .05, **P < .01 (ANOVA). n.s., not significant.
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Teqing than in Momiroman and H193. Momiroman had the highest
1000-grain weight and Teqing had the lowest. H193 had the highest
ratio of filled grains and Momiroman had the lowest. For this reason,
the rough paddy yield, rough brown rice yield, and the brown rice yield
of Momiroman was significantly lower than those of H193 and Teqing
on 3-year average. Sink capacity was highest in Teqing, and there was
no difference between Momiroman and H193. Harvest index was
highest in Teqing and lowest in Momiroman.

3.2. Dry matter accumulation and non-structural carbohydrates in stems

Shoot dry weights at full heading and maturity, and shoot growth
rate during ripening of Momiroman were not different from those of
H193 and Teqing (Table 2). Shoot dry weights at 20 DAH and maturity
were lower in Teqing than in H193. Panicle dry weight at 20 DAH and
panicle growth rate from full heading to 20 DAH of Momiroman were
significantly lower than those of H193 and Teqing (Table 3). There was

no difference among the cultivars in panicle growth rate from 20 DAH
to maturity. Stem NSC content at full heading was lower in Momiroman
than in H193 and Teqing, whereas contents at 20 DAH and maturity
were higher in Momiroman and H193 than in Teqing (Table 4).
Therefore, the decrease in NSC content from full heading to 20 DAH,
which appears to indicate the amount of NSC translocated from stem to
panicle, was much smaller in Momiroman than in H193 and Teqing.
Stem NSC content at maturity was much lower and its decrease from
full heading to maturity was much greater in Teqing than in the other
two cultivars. Apparent translocation ratio of NSC (Ratio of ΔNSC) from
full heading to 20 DAH was highest in Teqing and lowest in Mo-
miroman.

3.3. Stem carbohydrate contents and activities of enzymes related to starch
metabolism

To investigate whether starch metabolism in stems is responsible for

Table 2
Shoot dry weight and shoot growth rate during ripening.

Year Cultivar Shoot dry weight (g DWm−2) Shoot growth rate (g DW m−2 day−1)

Full heading 20 DAH Maturity FH–20 20–M FH–M

2014 Momiroman 1082 ± 96 1468 ± 129 2142 ± 103 19.3 ± 3.9 20.4 ± 4.4 20.0 ± 3.2
H193 1240 ± 104 1490 ± 115 2231 ± 18 12.5 ± 10.6 22.4 ± 3.8 18.7 ± 1.7
Teqing 1384 ± 565 1490 ± 609 1966 ± 817 5.3 ± 0.8 14.0 ± 3.9 10.8 ± 2.5

2015 Momiroman 1579 ± 49 1618 ± 34 2073 ± 79 1.7 ± 1.4 9.3 ± 2.2 6.9 ± 1.4
H193 1679 ± 26 1927 ± 27 2211 ± 116 11.3 ± 2.3 6.4 ± 2.0 8.1 ± 2.1
Teqing 1372 ± 26 1683 ± 59 1737 ± 38 14.1 ± 2.6 1.3 ± 1.1 5.7 ± 0.3

2016 Momiroman 1489 ± 40 1698 ± 25 1865 ± 119 9.9 ± 1.9 5.2 ± 4.5 7.1 ± 2.7
H193 1511 ± 62 1839 ± 74 2030 ± 108 16.4 ± 4.6 6.4 ± 1.5 10.4 ± 2.7
Teqing 1582 ± 38 1599 ± 21 1771 ± 134 0.8 ± 2.2 4.7 ± 3.0 4.1 ± 2.3

mean Momiroman 1383a 1595b 2027ab 10.3a 11.6a 11.3ab
H193 1477a 1752a 2157a 13.4a 11.7a 12.4a
Teqing 1446a 1591b 1825b 6.7a 6.7a 6.9b

ANOVA Year (Y) ** ** * n.s. *** **
Cultivar (C) n.s. * ** n.s. n.s. *
Y×C ** n.s. n.s. n.s. n.s. n.s.

Shoot growth rate=difference of shoot dry weight ÷ number of days. DAH: days after heading. FH–20: full heading to 20 DAH. 20–M: 20 DAH to maturity. FH–M: full heading to
maturity. Values are means ± SE (n=3). Different letters indicate statistically significant differences between cultivars (P < .05, Tukey’s test). *P < .05, **P < .01 (ANOVA). n.s.,
not significant.

Table 3
Panicle dry weight and shoot growth rate during ripening.

Year Cultivar Panicle dry weight (g DWm−2) Panicle growth rate (g DWm−2 day−1)

Full heading 20 DAH Maturity FH–20 20–M FH–M

2014 Momiroman 116 ± 13 447 ± 4 1127 ± 43 16.5 ± 0.8 20.6 ± 1.2 19.1 ± 1.1
H193 146 ± 9 585 ± 83 1157 ± 35 22.0 ± 4.6 17.3 ± 3.6 19.1 ± 0.5
Teqing 222 ± 91 644 ± 263 1192 ± 493 21.1 ± 2.1 16.1 ± 6.3 18.0 ± 5.0

2015 Momiroman 264 ± 11 543 ± 29 793 ± 66 12.7 ± 1.8 5.1 ± 1.9 7.4 ± 0.8
H193 220 ± 13 704 ± 26 1117 ± 73 22.0 ± 0.7 9.4 ± 1.3 13.6 ± 1.0
Teqing 230 ± 9 759 ± 22 966 ± 61 24.0 ± 0.6 4.9 ± 1.1 11.5 ± 0.8

2016 Momiroman 257 ± 9 632 ± 11 948 ± 102 17.9 ± 0.7 9.9 ± 2.0 13.1 ± 0.9
H193 219 ± 17 805 ± 56 966 ± 90 29.3 ± 2.4 5.4 ± 1.8 14.9 ± 1.8
Teqing 241 ± 4 776 ± 21 1046 ± 43 26.8 ± 0.8 8.0 ± 2.0 17.5 ± 2.2

mean Momiroman 212ab 541b 956a 15.7b 11.9a 13.2b
H193 195b 698a 1080a 24.4a 10.7a 15.9a
Teqing 231a 726a 1068a 24.0a 9.7a 15.7ab

ANOVA Year (Y) ** ** ** ** ** **
Cultivar (C) * ** n.s. ** n.s. *
Y×C ** n.s. n.s. n.s. n.s. n.s.

Panicle growth rate=difference of panicle dry weight ÷ number of days. DAH: days after heading. FH–20: full heading to 20 DAH. 20–M: 20 DAH to maturity. FH–M: full heading to
maturity. Values are means ± SE (n=3). Different letters indicate statistically significant differences between cultivars (P < .05, Tukey’s test). *P < .05, **P < .01 (ANOVA). n.s.,
not significant.
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the difference in NSC translocation efficiency among cultivars, we
measured the contents of starch and sucrose, which are primary com-
ponents of stem NSC, and activities of enzymes involved in starch
metabolism in internodes and leaf sheaths harvested in 2015. Starch
and NSC contents in the internodes of Momiroman and Teqing were
significantly lower than in those of H193 from −11 to 7 DAA (Fig. 1).
Those of H193 and Teqing then rapidly decreased, but that of Mo-
miroman did not decrease until 14 DAA. These results resembled the
data on NSC contents of whole stems (Table 4). Notably, the sucrose
content in the internodes of Momiroman was constantly higher than in
those of H193 and Teqing from 0 to 28 DAA. There was no difference in
the dynamics of sucrose content between H193 and Teqing. The slower

starch decrease and higher sucrose content were also observed in the
leaf sheaths of Momiroman, although the difference among the culti-
vars was smaller in the leaf sheaths than in internodes.

The activity of AGPase, a key regulatory enzyme of starch synthesis
(Tetlow et al., 2004), was highest in the internodes of all three cultivars
at 0 DAA and then decreased gradually (Fig. 2). However, the max-
imum activity varied greatly and was highest in H193 and lowest in
Momiroman. The activities of α-amylase and β-amylase, which are in-
volved in starch degradation in leaf sheaths during ripening (Sugimura
et al., 2015; Hirano et al., 2016), showed no consistent differences
among the cultivars from −11 DAA to 28 DAA (Fig. 2).

Table 4
NSC content of stems during ripening.

Year Variety NSC content (g m−2) ΔNSC (gm−2) Ratio of ΔNSC (%)

Full-Heading 20 DAH Maturity FH-20 20-M FH-20

2015 Momiroman 139.4 ± 4.1 59.0 ± 3.5 155.1 ± 30.3 −80.5 ± 3.8 96.2 ± 27.3 57.7 ± 2.1
H193 193.1 ± 10.8 44.7 ± 4.2 68.9 ± 5.2 −148.4 ± 8.2 24.2 ± 6.9 76.9 ± 1.4
Teqing 161.5 ± 0.9 14.4 ± 5.8 24.4 ± 5.5 −147.1 ± 5.6 10.0 ± 1.9 91.1 ± 3.6

2016 Momiroman 167.9 ± 3.4 77.2 ± 6.1 74.7 ± 17.5 −90.7 ± 4.6 −2.5 ± 11.9 54.1 ± 3.1
H193 274.6 ± 7.1 86.5 ± 21.1 117.7 ± 23.5 −188.1 ± 23.3 31.2 ± 10.6 68.4 ± 7.7
Teqing 301.3 ± 8.8 34.6 ± 2.3 23.1 ± 3.3 −266.7 ± 10.9 −11.5 ± 4.2 88.4 ± 1.1

mean Momiroman 153.7b 68.1a 114.9 a −85.6a 46.9a 55.9c
H193 233.9 a 65.6a 93.3 a −168.3b 27.7ab 72.6b
Teqing 231.4 a 24.5 b 23.8 b −206.9c −0.8b 89.8a

ANOVA Year (Y) ** ** n.s. ** ** n.s.
Cultivar (C) ** ** ** ** * **
Y×C ** n.s. * ** ** n.s.

ΔNSC (apparent NSC translocation) is the difference in NSC content. Ratio of ΔNSC= ΔNSC÷NSC content at Full heading× 100. DAH: days after heading. FH–20: full heading to 20
DAH. 20–M: 20 DAH to maturity. Values are means ± SE (n=3). Different letters indicate statistically significant differences between cultivars (P < .05, Tukey’s test). *P < .05,
**P < .01 (ANOVA). n.s., not significant.

Fig. 1. Carbohydrate contents of internodes and leaf sheaths. The third internodes from the uppermost internodes and the sheaths of the third leaves from the flag leaves were analysed.
Values are means ± SE in 2015 (n=6). Different letters indicate statistically significant differences between cultivars (P < .05, Tukey’s test).
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3.4. Differences in grain filling according to position in a panicle

Distribution of grain weight in a panicle at maturity is shown in
Fig. 3. Momiroman had a broad peak at 28mg and had many grains
that were relatively light but not completely empty, even among the
upper A (superior) grains. We classified grains by weight into filled
(> 18.5mg), fertile but unfilled (6.0–18.5 mg) and sterile for the most
part (< 6.0 mg). The weight distribution of grains in each position is
shown in Table 5. The occurrence of> 18.5-mg grains in Momiroman
was notably low, even in the upper A group. That of the 6.0–18.5-mg
upper A grains was higher in Momiroman than in H193 and Teqing,
whereas there was no difference in those of< 6.0mg. The occurrence
of> 18.5-mg upper B grains was higher and that of> 18.5-mg lower B
grains tended to be higher in H193 than in the other two cultivars.

3.5. Effect of spikelet thinning on grain-filling rate

The dynamics of grain weight fitted with the flexible sigmoid model
(Yin et al., 2003) are shown in Fig. 4, and corresponding parameter
values are listed in Table 6. The model accurately described the dy-
namics of grain weight, with R > 0.91 (Table 6). tm was longer and Cm

was smaller in superior spikelets of Momiroman than in those of H193
and Teqing. Cm was also smaller in inferior spikelets of Momiroman
than in those of H193 and Teqing.

To increase carbohydrate supply to grains, we thinned spikelets on
the flower-opening day. Overall, the effect of thinning on superior
spikelets of Momiroman seemed to be smaller than on those of H193
and Teqing; tm of H193 was shortened by thinning and Cm of H193 and
Teqing was increased. The effects of thinning on inferior spikelets
tended to be similar regardless of the cultivar (tm was shortened and Cm

was increased), although the effects were smaller in Momiroman.

4. Discussion

4.1. Relationships between yield, grain-filling and stem NSC

We found that the ratio of filled grains was much lower in
Momiroman than in H193 throughout the 3 years, and that of Teqing
was intermediate (Table 1), while there was no difference in the
average of sink capacity (defined as single grain yield× number of
spikelets per area) over the 3 years between Momiroman and H193;
that of Teqing was highest (Table 5). Because the shoot growth rate
during ripening in Momiroman was not lower than those of the other
cultivars (Table 2), not the lower ability of carbon assimilation in
leaves, but the lower grain-filling ability might be responsible for
poorer grain-filling rate of Momiroman.

The panicle growth rate and ΔNSC were smaller in Momiroman than
H193 and Teqing until 20 DAH (Tables 3 and 4), suggesting that the
lower grain-filling rate at early ripening due to lower NSC translocation
is a possible reason of poor grain-filling of Momiroman. Although NSC
accumulation in the stem of Momiroman at full-heading was smaller, a
lot of NSC remained in Momiroman in stems at 20 DAH. The ratio of
ΔNSC of Momiroman was smallest among three cultivars (Table 4),
indicating a very low efficiency of NSC translocation. Grain filling may
be affected more directly by low translocation efficiency than by low
NSC accumulation.

4.2. Starch metabolisms in stems of Momiroman

To understand the physiological reason of low NSC translocation
efficiency in the stems of Momiroman, we further investigated NSC
components and activities of enzymes involved in starch metabolism.
Although they were conducted only in 2015, the similar results can be
expected in the other two years because the trends of yield and stem
NSC contents were highly constant over the three years. Low

Fig. 2. Activities of AGPase, α-amylase and β-amylase in internodes and leaf sheaths. The third internodes from the uppermost internodes and the sheaths of the third leaves from the flag
leaves were used. Values are means ± SE in 2015 (n=6). Different letters indicate statistically significant differences between cultivars (P < .05; Tukey’s test).
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translocation efficiency might be caused by slow starch degradation or
low efficiency of sucrose transport. Sucrose content in the internodes
and leaf sheaths of Momiroman tended to be higher than H193 and
Teqing after heading (Fig. 1). Because the synthesis of sucrose and its
loading into the phloem follow starch degradation in NSC translocation,
these results suggest that not starch degradation but sucrose translo-
cation was the major cause of the lower rate of NSC decrease in Mo-
miroman stems. This assumption is supported by the fact that the ac-
tivities of AGPase in the internodes and leaf sheaths of Momiroman
were not higher and those of α-amylase and β-amylase were not lower
than those of H193 and Teqing during ripening (Fig. 2).

4.3. Sink strength in Momiroman

Sink limitation and stem carbohydrate metabolism may affect stem
NSC metabolism, as Hirose et al. (2017) reported that genetic limitation
of spikelet number using a mutation in the gene SP1 (Short-Panicle 1;
Os11g0235200) increased starch content in stems. Since there was no
difference among the cultivars in the occurrence of sterile (< 6mg)
grains, sterility was not the main cause of poor grain filling in Mo-
miroman (Table 5, Fig. 3). The occurrence of 6.5–18.5 mg grains was
higher in Momiroman than in H193 and Teqing regardless of whether
the spikelets were superior (upper A and C) or inferior (lower B)
(Table 5). Other studies regarded low grain-filling rate to be limited to
inferior spikelets (Kobata et al., 2013; Yoshinaga et al., 2013; You et al.,
2016). Here, however, we observed differences among cultivars also in
superior spikelets, and the calculated maximum growth rate (Cm) was
lower in Momiroman than in H193 and Teqing in both superior and
inferior spikelets (Fig. 4, Table 6). The Cm of inferior spikelets seemed
to be improved by thinning regardless of the cultivar, suggesting that
grain growth rate in inferior spikelets is restricted by carbon supply, in
agreement with previous reports (Kobata et al., 2013; You et al., 2016).
In superior spikelets, the Cm of Momiroman seemed not to be affected
by thinning, but those of H193 and Teqing were improved. This result
indicates that grain growth in the superior spikelets of Momiroman was
restricted not by the shortage of carbohydrate supply, but probably by
sink strength.

These results led us to hypothesise that low sink strength is the
major cause of low grain filling in Momiroman, which delays grain
growth and decreases the sucking force of NSC from stem. Although the
existence of such a force based on Münch’s hypothesis of convective
bulk flow has long been proposed, there are neither direct evidence nor
established model which can explain this (Chang and Zhu, 2017). Our
results strongly support the theory from a physiological aspect. Sink
strength is determined by both the rate of sucrose breakdown and
starch synthesis. Many enzymes and transporters are involved in them
(Thitisaksakul et al., 2012), which are controlled by many genes, hor-
mones and signalling molecules, including sugars (Yang et al., 2003;
Sun et al., 2015; Inukai, 2017). These facts would make it difficult to
confirm the causes of low sink strength of Momiroman at the metabolite
level, and a technical breakthrough would be needed to enable un-
derstanding of the whole process of grain filling.

4.4. Factors limiting grain yield in H193 and Teqing

Although the average grain yields of H193 and Teqing over 3 years
were almost the same (Table 1), the factors limiting grain yield might
be different. H193 showed a higher ratio of filled-grains (Table 1). More
NSC remained at maturity in stems of H193 than those of Teqing
(Table 4). These results suggest that the sink capacity of H193 was

Fig. 3. Distribution of grain weight per panicle. “Upper”, “Lower”, “A”, “B” and “C”mean
position of grains in a panicle and see the Materials and Methods for the details. Values
are means of six panicles from six plants (one panicle per plant) in 2015.

Table 5
Distribution of grains by grain weight (%).

Upper Lower Total

A B C A B C

>18.5mg Momiroman 45.8 ± 4.7b 51.7 ± 6.1b 74.7 ± 48b 55.6 ± 5.2b 38.9 ± 10.8a 73.4 ± 5.1a 53.1 ± 4.0b
H193 90.4 ± 3.7a 82.5 ± 4.2a 89.6 ± 3.6a 87.0 ± 4.1a 68.8 ± 8.8a 82.4 ± 5.6a 80.5 ± 4.4a
Teqing 80.6 ± 3.2a 54.7 ± 4.3b 90.8 ± 3.1a 81.6 ± 3.1a 44.9 ± 8.5a 85.7 ± 2.8a 64.3 ± 4.2b

6.0–18.5 mg Momiroman 43.2 ± 5.1a 36.1 ± 5.0a 16.5 ± 4.9a 33.0 ± 4.7a 39.9 ± 8.0a 17.9 ± 5.4a 33.8 ± 2.4a
H193 3.8 ± 1.5b 8.6 ± 3.1b 6.0 ± 2.6ab 4.9 ± 2.0b 12.0 ± 4.3b 6.1 ± 3.4a 8.4 ± 2.1c
Teqing 9.3 ± 2.5b 28.6 ± 3.4a 3.5 ± 1.8b 10.5 ± 2.7b 30.1 ± 4.2ab 5.9 ± 2.7a 20.2 ± 2.4b

< 6.0mg Momiroman 10.9 ± 2.2a 12.2 ± 2.2ab 8.8 ± 2.0a 11.4 ± 1.5a 21.2 ± 4.3a 8.7 ± 2.5a 13.1 ± 1.7a
H193 5.8 ± 2.2a 8.9 ± 1.7b 4.4 ± 1.2a 8.1 ± 3.1a 19.2 ± 6.1a 11.5 ± 2.9a 11.1 ± 2.7a
Teqing 10.1 ± 3.9a 16.7 ± 2.4a 5.7 ± 3.3a 8.0 ± 1.5a 25.0 ± 4.7a 8.4 ± 1.0a 15.6 ± 1.8a

Values are means ± SE in 2015 (n=6). “Upper”, “Lower”, “A”, “B” and “C” mean position of grains in a panicle and see the Materials and Methods for the details. Different letters
indicate statistically significant differences between cultivars (P < .05, Tukey’s test).
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insufficient to exploit its high source potential. On the other hand,
source shortage relative to a large sink capacity may be responsible for
the low ratio of grain filling in Teqing. Unutilized source seems to be
low in Teqing because very little NSC remained in the stem, and the
harvest index was higher in Teqing than in H193 (Tables 1 and 4),
suggesting higher efficiency of translocation. However, the ratio of
unfilled but fertile grains was higher in Teqing than in H193 (Table 5),
indicating that the efficiency of carbon distribution among spikelets
was higher in H193 than in Teqing. Therefore, improving this dis-
tribution efficiency also could increase grain yield of Teqing.

5. Conclusion

We compared the grain-filling-related traits of Momiroman, which
has high sink capacity but low grain-filling ratio, with those of H193
and Teqing. Examination of the sink–source balance revealed essential
differences in grain-filling properties and led to the conclusion that low
sink strength is likely the major cause of low grain filling in
Momiroman. Although further studies to investigate the rate-limiting
steps in sucrose breakdown and starch synthesis in the endosperm of
Momiroman are needed to prove this hypothesis, this study provides
basic knowledge for improving the grain filling of high-yielding rice
cultivars.
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Fig. 4. The dynamics of grain weight. Circles indicate mean values of all harvested grains in 2015. Grain number in each plot is shown in Supplementary Table S2. Lines are regression
curves fitted with the flexible sigmoid model (Yin et al., 2003).

Table 6
Correlation coefficients and estimated parameter values of the fitted sigmoid model
shown in Fig. 4.

R Wmm tee tm Cm

Superior
spikelets
(Upper A)

Momiroman Intact 0.9839** 19.9 28.2 13.1 0.82
Thinned 0.9151* 19.7 27.2 13.2 0.85

H193 Intact 0.9997*** 24.6 25.8 10.2 1.18
Thinned 0.9787** 26.3 26.5 7.0 1.25

Teqing Intact 0.9970*** 22.7 29.6 11.2 0.95
Thinned 0.9806** 23.7 23.6 12.5 1.33

Inferior
spikelets
(Lower B)

Momiroman Intact 0.9698** 15.2a 97.6 44.4 0.18
Thinned 0.9975*** 15.2a 67.5 33.6 0.27

H193 Intact 0.9987*** 25.6 64.8 30.3 0.51
Thinned 0.9999*** 22.1 27.5 16.0 1.11

Teqing Intact 0.9995*** 18.9a 56.7 43.9 0.64
Thinned 0.9595** 18.9a 31.9 28.0 1.85

R: correlation coefficient. Wm: maximum grain weight (g). Te: end of growth period (day).
Tm: time when maximum growth rate was achieved (day). Cm: maximum growth rate
(g day−2). aCalculated by Eq. (2). “Upper A”and “Lower B” mean position of grains in a
panicle and see the Materials and Methods for the details. ***P < .001, **P < .01,
*P < .05.
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