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I Introduction 

Around 40% of farmland in is located in the land of mountainous and semi-mountainous areas. In the 

landslide areas of the much farmland has been since ancient 

for farmland conservation and reclamation in 

and/or for the 

The Fellenius method is 
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well known and is often used for the analysis of slopes with a slip surface of general shape. The Nonveiller method 

(Nonveiller, 1965), which is introduced from the moment equilibrium and extended to slip surfaces of general shape, is 

also convenient for the analysis of landslides. 

On the other hand, a general limit equilibrium method of slices was developed by Morgenstern, N.R. and Price, 

V.E.(1965). This method satisfies force and moment equilibrium conditions and is often used for case histories of 

landslides all over the world. The Spencer method (Spencer, 1967), which assumes parallel inter-slice forces, is one 

of the general limit equilibrium methods of slices for a slip circle. This method can be extended easily to slip surfaces 

of general shape by the modified angle of inter-slice forces (Spencer, 1969). Spencer succeedingly published another 

general limit equilibrium method of slices for slip surfaces of general shape (Spencer, 1973), which assumes each 

variable angle of inter-slice force between slices. These methods, which assume inter-slice force or factors, such as 

入・f(x)of the Morgenstern-Price method or 0;, Q of the Spencer methods, are practical and useful in converging 

computations. Fredlund and Krahn (1981) compared some limit equilibrium methods of slices and explained clearly the 

relationship between these methods. 

In this paper, some limit equilibrium methods of slices are reviewed. Also, a general limit equilibrium method of slices 

is introduced (Furuya, 1986) and is examined by comparing with the Morgenstern & Price and the Spencer methods. The 

moment equation of this method is derived from the equilibrium of resultant vertical and horizontal inter-slice forces. 

Methods to calculate pore water pressure are also discussed as related to buoyancy under steady seepage flow conditions 

(Furuya, 1985). 

In addition, this paper was rewritten from「Examinationof Slope Stability Methods of Analysis(in Japanese)」reported
in the symposium of the Japan Landslide Society in 1998. 

II Forces acting on a slice 

Figure 1 shows the forces acting on a slice of a slip surface and Fig. 2 shows a polygon of those forces. The method of 

calculation for pore water pressure by u, Pw, Ps;, Psi+I, is defined as the total pore water pressure method (Yamagami 

and Ueda, 1982) in chapters 3, 4 and 5 of this paper. 

Fig. 1 Forces acting on a slice of a slip surface. 

Notation 

W = total weight of slice of width b and height H 

a = angle of base of slice 

(3 = angle of upper of slice 

U = force due to pore water pressure on base of slice 
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u = pore water pressure, l = length of base of slice, U = ul 

P = total force normal to base of slice 

p'= effective force normal to base of slice, P= p'十ul

c'= cohesion with respect to effective stress 

c'm = mobilized cohesion: c'/F, F = factor of safety 

¢'= angle of shearing resistance with respect to effective stress 

炉'm= mobilized angle of shearing resistance. tanが'm= (tan f)/F 

S = total shear force available 

Sm = mobilized shear force on base of slice 

Sm= { c'l+(P-ul)tan f }/F 

Pw = force due to water pressure on upper part of slice 

Ps;, Psi+l =forces due to water pressure on both sides of slice 

E';, E'i+J =horizontal inter-slice forces with respect to effective stress on both sides of slice 

X';, X';+J =vertical inter-slice forces with respect to effective stress on both sides of slice 

Z;, Zi+J = resultant inter-slice forces of E';, X'; and E'i+l, X'i+l 

();, () i+J =angle determining slope of inter-slice force Z;, Zi+J 

X'; = E'; tan();, X';+J = E';+J tan() i+J 

Q = resultant inter-slice forces of Zi and Zi+l 

() = angle of inter-slice forces Q 

K = Seismic coefficient to account for a dynamic horizontal force. Acting point is assumed at point H/2 

X';,1 

KW PS,+/ E',+1 

Fig. 2 Polygon of forces acting on a slice. 

m Force and moment equilibrium conditions and methods of slope stability analysis 

All limit equilibrium methods of slices for slope stability analysis are introduced from force and/or moment equilibrium 

conditions based on assumptions concerned with inter-slice force, because the number of equations does not correspond 

to the unknowns and assumptions. 

Equilibrium conditions are as follows: 

① Force equilibrium in the vertical direction (or in the direction perpendicular to base of slice) 

② Force equilibrium in the horizontal direction (or in the direction parallel to base of slice) 

③ Moment equilibrium about a common point 

1 The Ordinary or The Fellenius method 

The following equation of the Ordinary or Fellenius method is widely used for the computation of factors of safety in 

the field of practical civil engineering in Japan. 

L{ c'l+(Wcos a -ul) tan¢'} 
F =・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(1) 

LWsin a 
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Forces acting on a slice are shown in Figs. 1 and 2. The computation considers the pore water pressures acting on the 

upper, both sides and the base of the slice, and seismic coefficient. The normal force on the base of the slice is derived 

from the summation of forces perpendicular to the base of the slice (Fig. 2). 

Wcosa +(Ps;-Ps;+1-KW)sina -Qsin(a -8)-p'-ul+Pw cos((]-a)= 0・・ …• • …• …• • …• …• • …• • …(2) 

The inclination of resultant inter-slice force is assumed to be parallel to the base of the slice in the Ordinary method, 

thus, sin(a -0) equals zero. Therefore, the following equation is derived. 

p'=Wcosa +(Ps;-Ps;+1-KW)sina -ul+Pwcos((J-a)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(3) 

The following equation is also derived from the sullllllation of forces parallel to the base of the slice (Fig. 2). 

Pw sin((3 -a)+Sm= Wsin a +Qcos(a -0)ー (Ps;-Psi+I -KW) cos a・・ …• • …• …• • …• …• • …• …• • …• • …(4) 

Substituting (3) into (4), the equation for factor of safety is derived as follows: 

L{c'l+([K]-ul-[J] sin a) tan f} 
F=・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(5) 

L{Wsina +[J]cosa -Pwsin({J-a)+ Qf 

where [K]=Wcos a + Pwcos({J -a) 

[J]=KW +Psi-Psi+! 

2 The Janbu's method 

Two methods, the Simplified and the Rigorous methods, are included in the Janbu's methods (Janbu, 1954). The normal 

force p'on the base of each slice is derived from the summation of vertical forces (Fig. 2). The computation includes the 

pore water pressures acting on the upper, both sides and the base of the slice, and seismic coefficient. 

W+ X'i+I -X'; + Pwcos (3 = (p'+ ul) cos a + Sm sin a・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(6) 

From equation (6), 

p'= 
[M]-c'mlsina 

ma 
.......................................................................................... (7) 

where [M] = W+X';+1-X叶 Pwcos 113 

and ma= cos a +tan伶'msin a 

The 

F
 

factor derived from the summation of horizontal forces 

where sin(] +(Psi -Psi+J + E;-E;+J) 

The summation of inter-slice force must cancel in 

can be 
ふ

of failure surface. 

iteration. Correction is of internal 

of 

and 
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In the Janbu's rigorous method, the acting point of inter-slice force is assumed to be 1/3 H from the bottom of the slice 

comer. X; and Xi+J are evaluated from the conditions of moment equilibrium in each slice about the middle point of the 

base in order to calculate p'. 

3 The Simplified Bishop and The Nonveiller method 

The Nonveiller method is extended to general slip surfaces from the simplified Bishop for slip circles (Nonveiller, 

1965). The normal force p'on the base of the slice is also derived from the summation of vertical forces in the force 

polygon of Fig. 2 [Equation (7)]. Inter-slice forces must cancel in total sliding mass. Therefore, from the summation of 

moment equilibrium of forces acting on each slice about a common point Oc (Fig. 3), the following equation is derived: 

lW・x=lS・a十 lP・J-lKW(y+H/2) -lPwcos(3・x + lPw sin/3・y................................. (9) 

From equation (9), we obtain the equation for the factor of safety as follows: 

L(c'l + p'tan f)・a 
F=・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(10) 

~W•x-~P·f +LKW(y十 H/2)+ [L] 

where [L] = L Pw cos (3・xー LPwsin/3・y

Equation (10) becomes the simplified Bishop method (Bishop, 1955), because f equals zero in the slip circle and 

becomes the Nonveiller method in the slip surfaces of general shape. Inter-slice forces X';+J, X'; are ignored in both 

methods. In case that the inter-slice forces are considered, equation (10) is called the Bishop's rigorous method in the slip 

circle. The factor of safety can be computed by iteration. 

Oc 

Fig. 3 Moment of external forces acting on each slice about a common point Oc. 

4 The Morgenstern-Price method 

In the Morgenstern-Price method (Morgenstern & Price, 1965), a relationship between vertical and horizontal inter-

slice forces is assumed as follows: 

X=入・f(x)・E'・・・・ ・・・ ・ ・・・・ ・ ・・・ ・ ・ ・・・ ・ ・・・ ・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・ ・・・ ・ ・・・ ・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・・・・ ・ ・・・ ・ ・(11) 

where X denotes the vertical shear force on the side of the slice, 

入isa parameter, 

x is the factor of mter-shce force. and f() 

From the equilibrium conditions acting on an infinitesimal slice (Fig. 4), we obtain: 
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1 
E= [E;L + Nx2 + Px]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(12) 

L+Kx 2 

where 

K=入k[ 
tan伶＇
テ +A〕

L=入m(与t+A) +I-A竺芦

N=P [皿t'..+A-ru(J+Aり
F 字］

P=砂+Aり十q[ ta:t十A-ru(l十が） ta;/'] 

y=Ax+B 

dW 

dx 
=px + q 

f= kx + m, the functionfis defined by equation (11) depends linearly onx. 

Ea equals zero at the beginning of the slip surface in the usual case. The value of En at the end of a slip surface is 

determined by integration across each slice. En is usually zero from the boundary conditions. 

From the moment equilibrium about the mid point of the infinitesimal slice, after simplifying and proceeding to the 

limit as dx→ 0, the following equation is derived: 

d dE'd dPw 
X = -(E'·y'i)-y —+- (Pw・h)-y-・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(13) 

dx dx dx dx 

By integrating equation (13), we obtain: 

M = E (yt -y) = J: (X -E詈血 .•••.•••..•••.••••.•••.••••.•••..•••.•••..•••.••••.•••..•••.•••..•••.••• (14) 

工

沢戸ps 

y
 

Fig. 4 Forces acting on an infinitesimal slice. 
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Since moment equals zero at the end of the slip surface in general, Mn = 0 when moment equilibrium is satisfied in a 

slip surface. The factor of safety is computed from equations (12) and (14) by the Newton-Raphson method in assuming 

f(x) values. The validity of the results needs to be examined from the magnitude and distribution of inter-slice force and 

it's acting point. 

5 The Spencer methods 

Spencer proposed two methods of slices (Spencer, 1967, 1973). The resultant inter-slice force of Spencer method 

(1967) for slip circle is expressed as Q, of which angle is assumed parallel in all slices. This method can be extended 

to general shapes by modifying angles of the inter-slice force Q (Spencer, 1969). In the Spencer method (1973), inter-

slice force X', E'is expressed as resultant force Zand angle of inter-slice force Z is defined as {} i. The method in 1973 is 

described in this section. 

From two equations of vertical and horizontal force equilibrium conditions in Fig. 2, an expression between Z; and Zi+J 

is obtained as follows: 

[G] [B] + [C]十 [D]
Zi+l = Zi —+ ........................................................................... (15) 

[F] [F] 

where [G] = cos(a -0;) + tanが'msin(a -0;) 

[B]= tanが'm(Wcos a -ul) + c'm bsec a -Wsin a 

[C]= (Psi -Ps;+1-KW)・(cosa +tanが'msin a) 

[D]={sin((3 -a) + tan fm cos((3 -a)}・Pw 

[F]= cos(a -0;+1) +tanが'msin(a -0 i+I) 

For the first slice, Zais taken as zero and the expressions give the value of the next Zi+I, step by step, finally giving Zn. 

When the force equilibrium is satisfied in a sliding mass, inter-slice force at the end of the last slice becomes zero. 

Zn= 0・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(16) 

Fig. 5 Moment of forces about point A1 . 
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Pふ

Fig. 6 Moment of forces about point An . 

From the moment equilibrium about the middle of the base of the first slice (AI, Fig. 5), the vertical distance XI from 

AI of inter-slice force ZI is derived as follows: 

Pwl HI sin(31-KW1・H/2 + Psoh'L1-Ps1 h'Rl 
X1=・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(17) 

ZI cos 01 

therefore, 

Pwl HI sin(31-KW1・H1!2 + Psoh'L1-Ps1 h'Rl 
J1=b1tan81/2-b1tan (-a1) 12+ ........................ (18) 

ZI cos釦

By step by step computations of 12, 13, ・ ・ ・, In is derived from deduction as follows: 

] n 

In= bn (tan On-tan an) I 2十 L[I]・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(19) 
Zn COS 0n J=l 

where J='Zj-1 {sin 0j-J (bj + bj-1) -cos 0j-J (bj tan aj + bj-1 tan aj-1) }/ 2 + Pwj凡 sin/Jj 

-KWi Hj/ 2 + Psj-1 h'Lj -Psj h'Rj 

From the moment equilibrium about the middle point (An) of the base of the last slice (Fig. 6), the following equation 

is obtained. 

瓦 COSBn-1 Zn-1 + Pwn Hn sin /Jn I 2-HnKWn + Psn-1 (一h'u,)-Psnh1Rn = 0….. …• ….. ….. …• ….. …• ….. ….. (20) 

Therefore, 

— Hn KWn I 2 -Pwn Hn sin /J n + [PH] 
X叫 n= ............................................................ (21) 

Zn-1 COS 0n-1 

where [PH] = Psn h'Rn -Psn-1 (-h'Ln) 

XnAn is also derived using equation (19) in the last slice as follows: 

江 =ln-1+bn(tan0n-1 -tanan)/2 

] n-1 
= bn-1 (tan On-I -tan an-I) I 2 + L [J] + bn (tan On-I -tan an) I 2 ….. ….. …• ….. …• ….. ….. (22) 

Zn-1 COS 0n-1 j-1 
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where 

苫[J]=名}JJ―Zn-I{sin 0 n-1 (bn+ bn-1)-cos 0n-1 (bn tan an+ bn-1 tan a n-1)} / 2 

-PwnHn sin/3 + Hn Wn/2-Psn-1 (-h'心十Psnh'Rn ......................................................... (23) 

From equations (21), (22), the following expression is obtained for the moment equilibrium in a sliding mass. 

苫[]]= 0 ..................................................................................................................... (24) 

The factor of safety is calculated from equations (16) and (24) by the Newton-Raphson method. The validity of the 

results needs to be examined from the magnitude and distribution of the inter-slice force and it's acting point. 

6 The proposed method 

This method (Furuya, 1986) was proposed assuming the parameter 0; of an angle of inter-slice force similar to the 

Spencer method (1973). It generalizes a common point of moment equilibrium different from the first point of slip 

surfaces. From the vertical and horizontal force equilibrium (Fig. 2), the following expression concerning E'i+l, E'; is 

obtained, assuming the relationship between the vertical and horizontal inter-slice forces, X'; = E'; tan釘

[A] [B] + [C] + [D] 
E'i+l = - E';+ 

[E] [E] 
.............................................................................. (25) 

where [A]= tan 8; sin a + cos a -tan¢'m (tan 8; cos a -sin a) 

[B] = tanが'm(W cos a -ul) +c'm bsec a -W  sin a 

[C] = (Ps;-Psi+1-KW)・(cosa +tanが'msin a) 

[D] = {sin((J -a) + tan fm cos((J -a)}Pw 

[E] = tan Bi+J sin a +cos a -tan fm (tan Bi+J cos a -sin a) 

E'o is taken as zero for the first slice and the expressions give the value of the next E';+ 1, step by step, finally giving E'n. 

When the force equilibrium is satisfied in a sliding mass, inter-slice force at the end of the last slice becomes zero. 

E'n-•• ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 

force of E'; and E'i+l 

a common 

+(}'Oi E = xoi △ E-h△ E ........................................................... . 

On the other the summation of the moment of forces in each slice about the mid of the base must also 

cancel. Then, we have the 

-h△ E+m, 
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where mi=HiPwisinf];-H;KW;/2 + Ps;h';-Ps;+1h'i+I 

Substituting (28), and X'; = E'; tan馴 X'i+J=E'i+J tan仰 1into (27), we obtain the following equation: 

Mi = xoi (X'i+J-X'i)+yoi (E';+1-E';)-mi 

= xo;(E';+1tan8;+1 -E'itan8;) +yo;(E';+1-E';)-m; 

= (xoitan8;+1+yo;)E'i+I ー (xoitan 0;+yoi) E'; -m; ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ (29) 

「-.. , 
l゚C

y~ 

Fig. 7 Moment of the inter-slice forces△ X, △ E about aco皿 nonpoint Oc . 

When the moment equilibrium condition about a common point Oc is satisfied in a sliding mass, the summation of 

moment of inter-slice forces must cancel in the sliding mass. Therefore, we have the following equation: 

n 

l [M;] = 0・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・(30) 
i=l 

The factor of safety is computed from equations (26) and (30) by the Newton-Raphson method or linear reverse 

interpolation method. The validity of the results needs to be examined from the magnitude and distribution of inter-slice 

force and it's acting point. 

7 Relationship between the proposed method and the Spencer method 

In this section, the moment equilibrium equations of the proposed method and the Spencer method (1973) are discussed. 

In the moment equation of inter-slice forces about the common point Oc by equation (29), E';, xoi and yo; can be replaced 

by Zi, Xzi and yzi respectively. Then, the moment equation of inter-slice forces by equation (29) about the common point 

Oz, the first point in a sliding mass (Fig.8) , is expressed as follows: 

Mi = (xz;・sin 0; -yzi・cos0;)・Z; ー (Xzi"sin如 ― yz;・cos0i-J)・Z;-J-m; ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(31) 

Calculating Xzi and yzi by bi, bi・tana i sequentially, 

M1= (b1/2・sin01)-b1/2・tana1・cos81・Z1-m1・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(32) 
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M2 = l (b1 +b2/2)・sin82 -(b1・tana1 +b2!2・tana2)・cos82 }・Z2 

-l (b1+b2/2)・sin 82 一 (b1・tana1+b2/2・tana2)・cos82 }・Z1 -m2 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ (33) 

M1 = j (b1 +b2 +b1/2)・sin 81一 (b1tan al +b2 tan a 2+b1!2・tan a3)・cos 81 }・ZJ 

- j (b1 +b2+bJ!2)・sin81一 (b1tana1+b2tana2 +b1!2・tana1)・cos81 }・Z2 -m1 ・・・・・・・・・・・・・・・ (34) 

Oc~、 x~ 〗

＼ 
: yo; 
I 

I 

I ~ . 

芝

~
 

x,, 

Fig. 8 The arm length of moment for inter-slice force in a sliding mass. 

Mn= {(b1+・ ・ ・+bn-I+bn/2)・sin 0nー (bitan al+・ ・ ・+bn-1 tan an-I +bnl2・tan an)・COSOn}• Zn 

-{(b1 +・ ・ ・+bn-1 +bn/2)・sinOn-I -(bl tan a1+・ ・ ・+bn-1 tan an-1+bnl2・tan an)・cos On-I}・Zn-I 

-mn (35) 

The moment equation in a sliding mass is derived as follows: 

苫[M』=-Z1・{sin81・(b1 +b2)-cos 81・(bltan a1+b2 tan a2)}/2 

-Z2・{sin 82・(b2+b3)-cos82・(b2tan a2+bJ tan aJ)}/2 

-Zn-I・{sin0n-J・(bn-1+bn)-cos0n-1・(bn-1tan an-I+ bn tan an) }/2一 L[m;]・・ …• • …• …• • …• …• • …• ・ (36)
i=I 

Therefore, the following relation can be obtained frorn equation (31), 

L [M;] =一L[Zi-1・{sin0i-J・(bi+bi-1)-cos 0i-J・(bitan ai+ bi-I tan ai-1) }/2] 一L[m;] 
i=l i=l i=l 

n 

＝一 L[JJ 
i=l 

(37) 

Equation (37) clearly shows that the equation of moment equilibrium of the proposed method is essentially the same 

as the Spencer method(1973), though the sign of the equation becomes reverse. 
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W Relation between inter-slice force, force and moment equilibrium in each method of slope stability analysis 

The relation between each method of slope stability analysis and inter-slice force, force and moment equilibrium, 

is shown in Table 1. These methods are generally derived under force and/or moment equilibrium conditions with 

assumptions concerning the inter-slice force. The Morgenstern-Price and the Spencer (1973) methods are recognized 

as general limit equilibrium methods of slices and the factors of safety are computed by the conversing technique of 

the Newton-Raphson method. The method proposed in this paper is also a general limit equilibrium method of slices as 

simple as the Spencer method (1967, 1973). 

Fredlund and Krahn compared several limit equilibrium methods of slices for slope stability analysis and showed the 

relation between inter-slice force, the force and moment equilibrium(1977). Figure 9 is an example of the section of a 

slice surface and Fig. 10 is the results of the analysis of this example. The value of the factor of safety Fm calculated by 

the moment equilibrium equation varied slightly with the change in the parameter入， becauseX';, X'i+J are involved 

only in p'. Furthermore, in the general slip surface, the factor of safety Fm is barely influenced by the inter-slice force, 

because the moments of P in each slice cancel each other totally and the value becomes relatively small. On the other 

hand, the value of the factor of safety FJ calculated by the force equilibrium equation varied greatly with a change 

of parameter入， becausethe horizontal component of inter-slice force E is involved in the denominator of the slope 

stability equation (8). 

Point A in Fig. 10, with入=0, results in an inter-slice force of zero. This gives the same value as the simplified 

Bishop method in the slip circle and the same value of the Nonveiller method in a general slip surface. 

Point B gives the same result as the simplified Janbu method that has not been corrected. This value can be corrected 

by the correction factor or X';, X'i+J calculated from the moment equilibrium equation and approaches the results of a 

rigorous solution (Fredlund and Krahn, 1977, Kawamoto, 1981)。

Table 1 Methods of slope stability analysis, force and moment equilibrium, and inter-slice force. 

Methods of slope 
① ② ③ 

inter-slice 
stability analysis force 

Fellenius 

゜゚Simplified Janbu 

゜゚Simplified Bishop 

゜゚Nonveiller 

゜゚Spencer 

゜゚゚
Considered 

Morgenstern-Price 

゜゚゚
Considered 

The Proposed 

゜゚゚
Considered 

① Vertical (perpendicular to the base of the slice) force equilibrium 

② Horizontal (parallel to the base of the slice) force equilibrium 

③ Moment equilibrium 

0・ ・ ・Satisfied 

(120,90) 

0
5
 60 

(U) 
UO!lt?A~I3 

y, 120 pct 

0' • 20° 

40トー
c', 600 psf 

—7---~ 
PIEZOMETRIC LINE 4 

20 

CONDITION 2 (weak layer) 
c',o, 炉10°

BEDROCK 

0 20 40 60 80 100 120 140' 

Distance (ft) 

Fig. 9 An example of a slip surface (Fredlund and Krahn, 1977). 
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B
 

1.80 

゜
0.2 

入
0.4 0.6 

Fig. 10 Relation between the factor of safety, methods of slope stability analysis and入

(Fredlund and Krahn, 1977). 

Point C in Fig.IO gives a value that satisfies the force and moment equilibrium conditions simultaneously, a so called 

rigorous solution. Because the change in the Fm value by入issmall, the simplified Bishop method and the Nonveiller 

method give results close to the rigorous solution in many cases, although inter-slice force is ignored, provided the 

common point of moment in the Nonveiller method is needed to be set as far as possible in the center of the general slip 

surface. 

The Fellenius method, which is used in the analysis of general slip surface of landslide in Japan, generally gives smaller 

values than the rigorous solution. This value depends on the shape of slip circle and/or underground water level, whether 

smaller or larger than point C. 

Figure 11 is an example of the slip surface of a fill dam and Fig. 12 shows the results of analysis of Fig.11 and 

the characteristics of force and moment function of three methods by parameter. The Spencer method (1973) and 

the proposed method give fundamentally the same value for factor of safety from the equations of force and moment 

equilibrium in the assumption X'; =E'; tan 8 i (Furuya, 1986). The Morgenstern-Price method gives almost the same result 

as the Spencer method (1973) from the differential equations of force and moment equilibrium in the assumption X'; =入

・f(x)・E';. This is similar to the assumption of the Spencer method (1973), even though the value of the results is slightly 

different because of the numerical solution technique (Kawamoto, 1981, Furuya, 1986, Kondo, 1997). 

③
 

''  0 20m 

④ 

① ② ③ ④ 

yt (kN/mり 24.5 24.5 24.5 25.5 

ysat(kN!mり 25.7 26.3 24.5 26.6 

c'(kN/mり 26.46 4.9 0.0 14.7 

炒'(degree) 36.0 35.0 33.0 22.0 ② 

Fig. 11 An example of the slip surface of a fill dam. 

However, in the computation of the factor of safety from the moment equation, the characteristic of function Fm 

changes remarkably, depending on the position of the common point of moment (Furuya, 1986). The Spencer (1973) and 

the Morgenstern-Price methods satisfy the moment equilibrium conditions summing the inter-slice force of total sliding 

mass about the starting point of the slip surface as a common point of moment, point Oz (Fig. 8). On the other hand, the 

proposed method sums the inter-slice force of total sliding mass about point Oc as a common point of moment (Fig. 8). 

Figure 13 shows a slip surface and positions of center of moment as an example of computation. Figure 14 shows the 
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Fig. 12 
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Characteristics of force and moment function for three methods by parameter 0 . 

No. 4 (Oc) 

Fig. 13 An example of a slip surface (Lambe & W血man,1979) 

゜
2
 

と
;)Jl?S
J
O
 J
O
P
l
?
i
l
 

I 

I 

I 

1 Moment by No. I 
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Parameter 0c of inter-slice force 

Fig. 14 Variation of the factor of safety that depend on the common point of moment 

results of analysis of the slip surface in Fig. 13 and the characteristic of function Fm depending on the changes in the 

common point of moment. These figures show that the function Fm becomes almost simple straight line as approaches 

point Oc, however, that the function Fm becomes hyperbola about point Oz. In the hyperbola function, it is difficult 

to obtain simple result in the conversing computation of the Newton-Raphson method, if the initial value of 0; is not 

proper. In this case, we need more optional work to find the proper initial value of 0;, by writing a more complicated 

computing program. Even though we can obtain the results, the number of conversing computations increases as the 

curvature of a hyperbola increases. On the contrary, if the Fm function is close to a straight line, we can obtain results 

with a few conversing computations simply giving the initial value of 0 i. Therefore, we have an advantage in setting 

the point Oc as the common point of moment, when the moment of inter-slice forces is summed in the total sliding mass 
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(Furuya, 1997). The proposed method is more general for expression of inter-slice force than the Spencer method (1969), 

and more practical and advantageous in computation of moment in a total sliding mass than the Spencer (1973) and the 

Morgenstern-Price methods. 

V Inter-slice force and side water pressure 

Figures 15 and 16 show the example of comparative analysis of the section shown in Fig. 11 in the case of effective 

inter-slice forces X'; and E'; calculating side water pressure as statically determinate stress, and in the case of the total 

inter-slice forces X; and E; including side water pressure as statically indeterminate stress. These figures show that E; is 

almost the same as E'; + Ps;, though X; is slightly different from X';. Both computing methods gave the same factor of 
safety, as Ugai et al. (1985) also indicated a similar result. In the Ordinary method, thus, we can obtain more accurate 

results in the method that calculates side water pressure Ps; as a statically determinate stress and ignores only X'; and E', 

than in the method that ignores total inter-slice forces X; and E;. 

2 I 2 kN/m ft1/m) 
X,' 

X, -190 (50) △・冬
＆ 

392⑲ : ／ vr X,' 
29' I'/ ,,¥ \~ , 
/96 (20) 

98 /10) , ＇ △ ~-
50 JOO m 

Horizontal distance of slip surface 

Fig. 15 Comparison of i血 r-sliceforce X; and X',. 
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3920 
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Ei 
＆ 

29./0 
(300/ 

Ei' 
＆ 

Psi 1960 
(200) 

9RO 
(JOO) 

50 JOOm 

Horizontal distance of slip surface 

Fig. 16 Comparison of inter-slice force E; and E',. 

VI Computing method of pore water pressure by buoyancy (The buoyancy method) 

In limit equilibrium methods of slices, there are two methods to compute the pore water pressure on each slice. One 

method individually calculates water pressures acting on the upper, both sides, and the base of the slice. The other is a 

method to calculate the buoyancy acting on the slice. The latter is simple and convenient, but, we need to modify the 

method for calculating buoyancy under the steady seepage flow conditions. Essentially the same results as the former 
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can be obtained by the modified buoyancy method, which corrects the direction of the buoyancy vector by a hydraulic 

gradient (Furuya, 1985, 1996). 

The buoyancy Pu becomes equal to the weight of water that is equivalent to the submerged space of the slice and acts 

vertically and upward as shown in Figs. 17 & 18. The buoyancy Pu acting on the slice under the steady seepage flow 

conditions is shown in Fig. 19. In this case, the buoyancy Pu changes the direction as shown in Fig. 20. If we assume the 

hydraulic gradient through each slice to be a straight line, the inclination to the vertical becomes equal to the hydraulic 

gradient 1:: as shown in Fig. 19. 

Ps, 

Fig. 17 Relation between water pressure and buoyancy Pu in a submerged slice . 

Ps,+I 
~ 

U ! Jl-Ps, 

~B"oyaaoy 

Fig. 18 Relation between water pressure and buoyancy Pu in a partially submerged slice . 

b
 

w 
Fig. 19 Forces acting on a slice expressed by buoyancy . 

Ps;+1 

u
 

Ps; 

Fig. 20 Relation between water pressure and buoyancy Pu under the steady seepage flow conditions. 

The buoyancy on the slice under the steady seepage flow condition acts vertically and upward and this force is 

equivalent to the water weight of the submerged space of the slice. At the same time, the force that is multiplied by tan e: 

acts on the slice horizontally. The hydraulic gradient e is zero in submerged and partially submerged slices. Therefore, 
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if we assemble the equation based on this idea, it is possible to express the buoyancy acting on the slices systematically 

under submerged, partially submerged, and steady seepage flow conditions. 

Pore water pressures acting on the base and both sides of the slice should be calculated from the potential line in a 

strict sense, because pore water pressure under steady seepage flow conditions is different from the water depth at a 

point on the slip surface. However, the water depth is sometimes used as pore water pressure directly and conveniently, 

and the pore water pressure is excessively estimated when the hydraulic gradient changes rapidly. As a simple modified 

calculation, we can correct the pore water pressure by multiplying the water depth by cos2 o: in the slice, assuming a 

straight potential line (Fig. 21, Furuya, 1981). The side water pressure can also be modified by cos2 E, and buoyancy can 

be calculated by the modified direction. The equations for limit equilibrium methods of slices are similarly introduced by 

the polygon in Fig. 22 (Furuya, 1996). 

Potential line 

D B 

Fig. 21 A simple modified calculation of water pressure by a straight potential line 

P' 

E'i+1 

Fig. 22 Force polygon expressed by buoyancy under steady seepage flow conditions 

King (1989) also described the steady seepage flow conditions in a assumption with a straight potential line (Figs. 23, 

24) as indicating the water pressure Fs by seepage flow with buoyancy. The water pressure Fs is derived as follows: 

Fs = yw・b・h・sin 0x・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(38) 

Where y w : umt weght of water 

麻： same value of e: shown in Fig. 22 

The resultant force becomes de (Fig. 25) and gives essentially the same result as the proposal method that water 

pressure is modified by cos2 c: (Pu = P'u・cos2 c:). As a result, The equation of the limit equilibrium methods of slices in 

the buoyancy method is introduced by the polygon in Fig. 22. 

In addition, it has been considered that the conversing condition of inter-slice force, LE= 0 or LE'= 0 (E = E'+ Ps) 

gives the same factor of safety in the general limit equilibrium method of slices. However, as King described in the 

discussion with Sanna (King, 1990), water pressure cancels in total sliding mass in case of a horizontal water surface. vm 
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On the other hand, when seepage flow exists, the final results of the former computing method may be influenced by an 

error in water pressure balance because it is not canceled in the total sliding mass. Therefore, computing accuracy of the 

factor of safety certainly increases when water pressures are treated as statically determinate stresses in calculation of the 

water pressure on a slice. In calculation of water pressure by buoyancy, accuracy clearly increases when we consider the 

seepage force, if it is under steady seepage flow conditions. 

d
 

h
 

Fig. 23 

'1Pw 
I I ~ ",. 

Wa 

kN/m 

0 JO 
' '  

Fig. 24 Force polygon of a slice expressed by buoyancy and seepage force Fs (King, 1989). 

Seepage force F、

F1、

Buoyancy 

Fig. 25 Relation between buoyancy, seepage force Fs and Pu 
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The force equilibrium equation (24) of the proposed method can be rewritten by the buoyancy method as follows: 

[A] [B]-[C] 
E'i+l = - Eケ十 .................................................................................... (39) 

[D] [D] 

where [A]= tan 0;・sin a +cos a -tan化(tan0;・cos a -sin a) 

[B] = c'm l +tan fm (Wa + Wb) COS a ー (Wa+ Wb) sin a 

[C] = (KW+Pu・sine:)・(tan¢'msin a + cos a) 

[D] = tan 0 i+J• sin a +cos a -tan炉m(tan0i+J•cos a -sin a) 

The moment equilibrium equation (29) also can be rewritten by the buoyancy method as follows: 

M= (x-tan仰 1+y+ H)・E'i+l一 (x・tan0叶 y+H)・E'叶 H・KW/2+ Hw・Pu・sin o: /2…………………………… (40) 

The factor of safety is computed from equations (38) and (40) by the Newton-Raphson method or linear reverse 

interpolation method. 

VII Comparison of computation results by the buoyancy and the total pore water pressure methods 

The section shown in Fig. 13 was analyzed by the proposed method of buoyancy described in chapter 6, with constant 

8;, 8;+1 and other methods. This is a case in which the hydraulic gradient rapidly changes in the slip surface and it is 

difficult to estimate exactly the pore water pressure from the water head in the slice. The pore water pressure, however, 

is calculated approximately from the water head in the slice corrected by cos 2 E: as shown in Fig. 21. 

The results of the slice method is affected by the number of slices in the slip surface, because of a slightly inexact 

acting point of water pressure and slice weight that are the center of the base or the upper. The shape of slip surface 

can be easily simulated correctly with more divided slices and the error of moment calculation also decreases, though 

input work and computation energy increases. The results of analysis are shown in Table 2. (a) of Table 2 is the results 

analyzed by Kawamoto (1981), with the slip surface divided into 26 slices by the total pore water pressure method. (b), 

(c), (d) are the results by the author. The calculation result is shown to three places of decimals for comparison, though it 

is enough to two places of decimals for practical purposes. The factor of safety by the Simplified Bishop method is 1.29, 

and 1.17 by the Ordinary method in the literature(Lambe & Whitman, 1979). These factors of safety shown by lambe & 

Whitman are a little larger than the results shown in Table 2 because the pore water pressure calculated by us is larger 

than the accurate valuc with thc crror of△ U shown in Fig. 21. The proposed method with 26 sliees by the 

method gives the same result as the Spencer and the Morgenstern-Price methods with 28 slices by the total pore water 

pressure method. This indicates that the 

Table 2 

1.123 

1.264 

method has less error in calculation of moment because of the same 

of 

26 slices 26 slices 
pore water 

1.125 1.127 1.126 
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Conclusion 

The Ordinary or Fellenius method has been the most fundamental and important method in the design of 

countermeasures for landslide or general slope stability analysis. This method gives a lower factor of safety than the 

general limit equilibrium methods of slices in many cases. However, this is improved partly by accurate computation 

of pore water pressure. The simplified Janbu method approximates the rigorous solution by a co汀ectionfactor and 

the Janbu's rigorous method also gives good result which approaches the results of a rigorous solution in many cases. 

However, it is as workable as the general limit equilibrium method of slices. The Nonveiller method gives a factor of 

safety close to the rigorous solution in many cases, even though inter-slice force is ignored, if we set the common point 

of moment as close to the center point of slip surface as possible. 

Nowadays, we can utilize high performance personal computers conveniently and easily compute factors of safety 

automatically by the general limit equilibrium methods of slices, such as the Morgenstern-Price method, the Spencer 

methods, and the method proposed in this study. In computation of the general limit equilibrium method of slices, we 

have an advantage in setting the common point of moment as near the center of slip surface as possible rather than setting 

it at the beginning point of the slip surface. The proposed method is simpler in expression of equations and also practical 

computation for this reason. This is very important for extension to three-dimensional analysis and/or application to 

geologically complicated slip surfaces. 

In addition, a method of how to determine the factor f(x) or 0; of inter-slice force reasonably needs to be developed and 

this is a topic for on going research. 

We can calculate simply and accurately pore water pressure by the seepage force with buoyancy under hydrostatic 

pressure and steady seepage flow conditions with the assumption that hydraulic line is straight in a slice, if the hydraulic 

gradient is not too large. When the hydraulic gradient rapidly changes, the width of the slice needs to be divided into 

smaller to increase calculating accuracy. 
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斜面安定解析のための極限平衡分割法の比較と評価

ーモーメント平衡式の改良と定常浸透状態における水中重量法一

古谷保

適用

日本の第三紀層泥岩や破砕帯等の地すべり地帯においては，地すべりや斜面崩壊がたびたび発生するにも

かかわらず，古くから農地として利用されてきたところが多い。このため斜面安定問題は農地保全において

も重要な課題であり，地すべりや斜面崩壊の安定性の検討に，極限平衡分割法による斜面安定解析式が一般

に用いられている。この方法には多くの方法が提案されてきたが，簡便法や簡易Bishop法，簡易Janbu法，

Nonveiller法， Morgenstern-Price法， Spencer法(1967,1973)等が広く利用されてきた。本論では，これらの方法

を要約するとともに，筆者の提案する一般分割法と定常浸透状態における水中重量法を紹介し，それらの比

較検討を行っている。

簡便法は地すべり対策工の設計において最も基本となる式であり，いわゆる厳密解と比較していくぶん低

い安全率が得られるが，間隙水圧の計算を精確に行えば精度は改善される。簡易Janbu法は補正係数により一

般に厳密解に近づく。また厳密Janbu法の場合も同様であるが，労力的には一般分割法とあまり変わらない。

Nonveiller法は不静定内力を無視しても，多くの場合において厳密解にある程度近い結果が得られるが，モー

メントの中心点の取り方として，極力，すべり面の中心に近い点を選ぶ必要がある。

今日ではパーソナルコンピュータが簡便に利用できるので，一般分割法による厳密計算も容易に行うこと

ができる。一般分割法では， Morgenstern-Price法やSpencer法(1973)のようにモーメントの中心をすべり面の始

点とするより，提案法のようにすべり面の中心に近い点として式を組み立てる方が収束計算が簡単になるの

で有利である。提案法は， Morgenstern-Price法やSpencer法(1973)と比較して，同程度の厳密解をより簡単な収

束計算で解くことが出来る。また水中重鯖法は，スライス内の動水勾配を直線近似して浮カベクトルの方向

を修正すれば，定常浸透状態にも適用でき，分割法の式と計算が一層単純化される。

なお、本論は「安定解析式の検討」 （シンポジウム「地すべりに関わるモデル解析と実際」，地すべり学

会， 1998) を基本にして、英文で纏め直されたものであることを付記する。

キーワード：斜面安定，極限平衡，分割法，間隙水圧，浮力


