

Study on CO_2 Concentration Under the Snowpack at a Warm Part of Snowy Region

メタデータ	言語: jpn
	出版者:
	公開日: 2019-03-22
	キーワード (Ja):
	キーワード (En):
	作成者: 小南, 靖弘
	メールアドレス:
	所属:
URL	https://doi.org/10.24514/00001520

暖地積雪地帯における積雪下のCO2濃度に関する研究

小南 靖弘^{*}

次

目

15
17
17
17
18
19
20
21
21
22
24
26
定
28
28
29
29
30
33

地球の長い歴史を通じて地球大気の組成は変化し てきた.CO2についても氷期・間氷期のサイクルな どの要因に伴って増減を繰り返してきた(中澤²⁶⁾). これらの変化の原因やその影響を明らかにすること はこれからの地球環境を考えていく上で重要であ り,多くの研究が行われてきた.一方,1950年代に 人間活動に伴うCO2の増加が指摘され(Callendar⁵⁾), 以来,人為的原因による気候変動について多くの議 論が行われ,また,系統的なCO2観測(Keelingら¹⁸⁾, など)や,氷床コアによる過去大気の分析などが行 われてきたところである.

平成16年7月20日受付 平成16年11月1日受理 ***北陸水田利用部**

1.はじめに	33
2. の導出	34
3 . 観測方法	34
4.観測結果	35
5.検討	36
積雪下 CO2 濃度予測モデル	38
1.はじめに	38
2.シミュレーション	38
3.シミュレーションの結果と考察	42
結言	44
1 . 積雪のCO2分子拡散係数の測定について	45
2.積雪層内の乱流拡散の推定について .	45
3.溶解係数 の検討について	45
4.積雪下CO2濃度モデルによる	
シミュレーションについて	45
5.今後の課題	46
摘要	46
引用文献	46
Summary	

論

序

地球上の炭素は,二酸化炭素,炭酸塩,有機化合物などの形で存在するが,その主なプールのうち短期的なものは大気,海洋,陸上・海洋生物など,長期的なものは堆積物(化石燃料),石灰岩などである.Watsonら⁴⁶⁾によると,陸上生物圏に存在する炭素量は大気圏の炭素量の約3倍であり,陸上の有機物量の増減は,大気中のCO2濃度に大きな影響を与える.

一般に土壌呼吸量は土壌温度の低下に伴って減少 するので,冬季におけるCO2発生量そのものは少な い.このため,積雪期間におけるCO2発生量は最近 まで重要視されていなかった.しかし,冬季は光合 成量もまた年間を通じて最小となるので,地域内で のCO2収支に占める土壌からの発生量の割合は大き い.Zimovら⁴⁹⁾はCO2濃度の季節的変動が低緯度地 帯よりも高緯度で大きくなる理由について、冬期の CO2フラックスが無視できないものである事を挙げ ている.また,Oechelら²⁷⁾は観測より,草原ツンド ラ地帯が強いCO2ソースである事を示した.地球上 の陸地の大半は北半球にあるため, CO2吸収・放出 の季節変化によるCO2濃度の変動幅は北半球の中高 緯度で最も大きい.さらに,積雪地帯は北半球の陸 地の44~53%を占めており、この地域の土壌内に存 在する炭素量は全地球のおよそ30%に相当する (IPCC¹⁶⁾). 以上のように, 全地球規模の炭素循環を 考える上で積雪地帯における収支は大きなウェイト を占めており,その中で冬期間の放出量は無視でき ないものである.

一方、農業研究分野においては,積雪下で越冬す る作物に対して生理的・病的に影響を与える生育環 境としての「積雪下環境」という概念が考えられて きた.たとえば温度環境・水分環境・光環境・力学 的環境(荷重)などであるが,積雪内空気の組成 (ガス環境)もまたその中の一つに位置づけられる.

積雪は土壌と大気とのガス交換に対する抵抗とし て働くため,積雪層内あるいは積雪下の土壌中のガ ス組成は,無雪期とは異なるものになる.ロシアの Tumanov⁴²⁾は積雪内の空気を吸引して分析した結果, 積雪内のO2濃度は大気中とほとんど変わらず,積雪 が作物の呼吸障害となることはないと結論付けてい る.一方,田崎⁴¹⁾はムギ類,豆類等の暗呼吸量の測 定を行った結果,融雪水による植物体による濡れに 着目して,植物にとって積雪下のガス環境は必ずし も無害とは言えないと主張した.

これらのように,積雪下ガス環境という概念は古 くからあったが,しかし実際の農業雪害研究の現場 では,独立して語られることはほとんどなかった. 雪害の程度を表わす指標は,作物体内の貯蔵炭水化 物の消耗量やその結果引き起こされる病気への感染 率であり,ガス環境はそれらを引き起こす要因の一 つである可能性はあるにせよ,ひとくくりに「積雪 下環境」の概念の中に組み込まれていたからである. そして,積雪下環境と言うときにはたいてい「0 , 暗黒,湿潤」がキーワードであり,ガス環境が重視 されることはなかった.たとえば大沼²⁰は,積雪下 の作物を取り巻く環境を網羅的に説明した優れた総 説であるが,ガス環境には触れられていない.

一方,積雪ではなく土壌中のCO2濃度は,土壌活 性や作物の根圏環境を知る指標として盛んに研究さ れてきた.その中で微生物や細菌の種類によるCO2 感受性の違いと,住み分けの実態が明らかになって きた.たとえばBurges and Fenton⁴⁾は,上層土中に 存在する菌は高濃度のCO2によって生育が強く抑制 されるが、下層土壌中に存在する菌はCO2に耐性で あること, 02濃度とこれらの菌との間にはこのよう な関係がないことを報告した.Durbin¹⁰⁾は植物体の 地上部,地表部および地下部から分離された Rhizoctonia solaniの分化型各11菌株の生育とCO2濃 度との関係を調べた結果,地上部から分離した菌株 では高濃度のCO2によって生育が強く抑制されるの に対し,地下部から分離された菌株は抑制程度が低 かったと報告し,同菌の分化型間の分布の違いは高 濃度のCO2に対する耐性の違いによるとした.以上 は夏作における事例であるが, 越冬作物が罹患する 代表的な病気である雪腐病の病原菌においても、こ のようなCO2感受性による住み分けがあることが明 らかになった.高松37)38)は褐色雪腐病を引き起こす Pythium菌の研究において水田土壌と畑土壌との CO2の違いを調べ,より高濃度の水田からはP. paddicumのみ,畑からはP. paddicumとP. iwayamai との両方が検出されたことはCO2濃度による住み分 けであるとした.すなわち,これまで病理学や生理 学の研究者が実験室内で積雪下環境を再現する際に は、「0,暗黒,湿潤」の条件を満たせば良かっ たが,これにCO2濃度の制御も必要であることが分 かったわけである.したがって,そのような研究現 場に知見を提供するためにも,積雪下におけるCO2 濃度の実態を把握する事は重要である.

本研究の目的は,土壌で発生し積雪を通じて大気 へと出て行くCO2移動の各プロセスについて,その メカニズムを定量的に明らかにすることにある.加 えて,それら各プロセスを統合した数値モデルを構 築し,検証を行うとともに炭素循環や作物生理の研 究に対して有用な知見を提供する.

そのためにまず、北陸農業試験場(現中央農業総 合研究センター北陸研究センター)内のムギ圃場お よび水田において1991年より断続的に積雪下CO2濃 度の測定を行い,データを蓄積した.平行して積雪 層底部のCO2濃度を決定する3つの要因(積雪の分 子ガス拡散係数,風による乱流ガス拡散係数,融雪 水による溶解)を抽出し、それぞれについて定量化 をおこなった。さらにそれらの知見を総合して、積 雪の状態より積雪層内のCO2濃度を予測する数値モ デルを開発し、検証を行った.

積雪下CO2濃度の連続測定

1.はじめに

積雪内のCO2移動プロセスを解明するにあたって は,まず実際の自然積雪下において,CO2濃度がど のような変化をしているかを把握する必要がある. そこで,ムギ圃場および水田において4冬季にわたっ て積雪層底部におけるCO2濃度の連続測定を行った.

通常,気体のCO2濃度の測定にはガス・クロマト グラフや赤外線式ガス分析計(IRGA)が使われる. 正確な測定のためには,最近は非分散型ガス分析計 (NDIR)が用いられる(田中ら⁴⁰⁾).しかし,ガス・ クロマトグラフは連続測定が出来ないし, IRGA / NDIRにしても手軽にフィールドに持ち運べるよう になったのは1980年代後半からである.また,通常 のIRGA / NDIRは赤外線吸収量を窒素を封入した比 較セルとの比較で行うクローズドパス方式なので、 ポンプによるサンプルの吸引が必要となる.積雪や 土壌のような多孔質内の空気を吸引するとマスフロ ーが生じて,自然状態の濃度分布を壊す恐れもある. 以上のような理由から,1990年代以前における積雪 層内のCO2濃度の連続測定例はほとんどない.なお, 最近では吸引を必要としなNIRGAも開発され,実際 に土壌に埋設して測定を行っている例もある(平野⁵⁰⁾).

筆者らは連続して自動観測を行うことを優先し, ガラス電極を用いて観測を行った.第2節に示すと おりIRGAなどに比べて精度・安定性は劣るが,一 定の精度で積雪下CO2濃度の挙動を把握する事が可 能であった.

2. 観測方法

観測は新潟県上越市稲田の北陸農業試験場(現中 央農業総合研究センター北陸研究センター)内のム ギ圃場,裸地,および水田で行った.北陸農業試験 場の圃場概略図を図1に示す.圃場は東西および南 北どちらも約400mで,その中心付近に気象観測露 場がある.圃場の北側は農業試験場の建物群,西側 および南側は民家である.東側は高架の道路(国道 18号線)を隔てて水田が続いている.図中の丸印が 観測地点を示し,黒丸がムギ圃場,白丸が水田であ る.ムギ(ミノリムギ)はドリルシーダーによる条 播で,条間は約30 cmである.播種期は10月上旬で, 積雪開始期の草丈は約3~5 cm程度であった.水 田は稲刈り後の状態で,高さ5-10cm程度の稲株が 残った状態である.観測は1991,1994,1999,2002 各寒候期に行った.表1に各測定期間ごとの測定項 目を示す.なお,これ以外にも1995,1997および 2001寒候期に同様の観測を行ったが,センサーの故 障で一部のデータが得られなかったため,本論文で は用いていない.

また,積雪および一般気象要素(表2)の観測はす べての年について図1に示す気象観測露場で行った.

積雪層底部CO2濃度は,2002寒候期以外は隔膜式 ガラス電極センサー(東亜電波工業CE-331)を地 上約1cmに固定して測定した(図2).このセンサ ーは,透過膜を通って内部液に溶解したCO2量を測 定するもので,レンジは0-2000ppmvで測定した.

図1 観測サイト図 北陸農業試験場(現北陸研究センター)新潟県上越市稲田1-2-1 黒丸は1991,1994年,白丸は2001年の観測.1999年は気象観測 露場内東側で行った.

年次	1991	1994	1999	2002
観測場所	ムギ圃場	ムギ圃場	裸地	水田
観測開始日	1991,2,1	1994,1,28	1999,1,13	2002,1.26
観測終了日	1991,3,9	1994,2,26	1999,3,18	2002,3,1
積雪層底部CO2濃度	ガラス電極	ガラス電極	ガラス電極	IRGA*
積雪層内CO2濃度				IRGA
大気中CO2濃度				IRGA
融雪水中 CO2濃度			ガラス電極	
融雪水 pH			電極式pH計	
融雪水EC			電極式EC言	it
地温	熱電対	熱電対	白金抵抗	白金抵抗
土壤水分				TDR
大気中CO2フラックス				渦相関
測定インターバル	10 分	10 分	10 分	20 分
*吸入管が詰まった	ため測定中止			

表1 測定年次・場所と測定項目

表2 気象観測露場において測定した項目

要素	測定方法	記録
積雪深	赤外線式積雪深計(1997年まで)	10 分毎の瞬間値
	超音波式積雪深計(1998年以降)	
積雪重量	圧力式積雪荷重計	10 分毎の瞬間値
	(メタルウェハー)	
積雪底面流出水量	1m×1m ライシメーター	過去10分間の
	500ml バケット式流量計で測定	積算値
降水量	溢水式降水量計(風よけ付)	過去10分間の
	取り付け高さは 3.5m	積算値
気温	白金抵抗式通風温度計	10 分毎の瞬間値
	取り付け高さは雪面上1.2~1.5m	
風速	プロペラ式風向風速計	過去10分間の
	取り付け高さは 6.25m	平均値
露点温度	塩化リチウム式	10 分毎の瞬間値
	取り付け高さは雪面上1.2~1.5m	

このレンジにおける分解能は10ppmvで,再現性精 度は5%/F.S.である.このように,通常用いられる IRGA (赤外線式ガス分析計)よりも精度は劣るが, ガスの吸引を必要としないので積雪層内の空気を乱 さずに連続測定が可能であるという利点がある.校 正は観測開始前と終了後に,1000ppmvCO2および 1.0%vCO2の標準ガスを用いて行った.期間中のド リフトは最大で50ppm v程度見られ,その場合は直 線で補正した.また,観測期間中にはときおり鋭い ピーク状の異常値が見られることがあった.この原 因は不明であるが,明らかに異常値と思われる部分 は取り除き,解析を行った.

なお,2002冬期では,積雪内(地上0.01m,0.17m) および大気中(地上1.8m)のCO2濃度をIRGAを用い て測定した.さらに,風によって生じる積雪層内 CO2濃度の変化を検討するために,渦相関法によっ て大気中のCO2フラックスの測定を行った.この観

図 2 観測に使用したガラス電極式CO2センサー プローブの直径は3cm,長さは約17cm.矢印の部分に隔膜が ある.

測の詳細については第 章で述べる.

また,1999冬期では融雪水によるCO2の溶解量を 検討するため,積雪層底部のCO2濃度と平行して融 雪水中の溶存CO2濃度および融雪水のpH・ECの測定 も行った,併せて日単位の降水・融雪水についてイ オン分析も行った.これらの観測の詳細については 第 章で述べる.

地温は1991および1994年冬期では深さ0 cm, 5 cm, 10 cm, 20 cm, 30 cm, 40 cm, その他の年は0 cmと10 cm で測定した.また,2001年冬期ではTDR式土壌水分 計を用いて,深さ10 cmおよび20 cmにおける土壌水 分の測定も行った,これらの結果については第 章 で述べる.

3. 観測結果

図3~図5に各年の積雪深・積雪重量, CO2濃度,風 速,気温・地温,底面流出水量の観測値を示す.なお, これらのグラフは1時間ごとにプロットしている.

観測期間中の最深積雪深は,1991年が0.78m, 1994年が0.56m,1999年が1.14mであった(各図のB). いずれの年も気温は期間の大部分でプラスで,最低 気温は約-5 であった(各図のA).

積雪層底部(地表面)のCO2濃度は,無雪期では 350-380ppm程度で,積雪の開始とともに増加する. 最大値は1991年が約700ppmv,1994年が約800ppmv, 1999年が約1100ppmvであった(各図のC).

積雪層底面からの流出はほぼ毎日見られ,多い時 では10mm/h程度の流出も観測された(各図のD). 10分平均風速は各年ともに最大10m・s-1程度だっ た(各図のE).また,これらの各年は風向のデータ

小南靖弘:暖地積雪地帯における積雪下のCO2濃度に関する研究

図3 1991寒候期の観測結果

気温は雪面上1.2~1.5m, CO2濃度は地上0.01mに,風速は地上 6.25mおける測定値. 流出水量は1m×1mライシメーターで測定された,積雪底面か

らの流出水量。

図5 1999寒候期の観測結果

気温は雪面上1.2~1.5m, CO2**濃度は地上**0.01mに,風速は地上 6.25m**おける測定値**.

流出水量は1m×1mライシメーターで測定された,積雪底面からの流出水量。

図4 1994寒候期の観測結果

気温は雪面上1.2~1.5m, CO2濃度は地上0.01mに,風速は地上
 6.25mおける測定値。
 流出水量は1m×1mライシメーターで測定された,積雪底面からの流出水量。

図6 風向と風速との関係(2001年冬期) 0度が北で,右回りに360度を示している.

は採っていないが,参考のために2001年の風向と風 速の相関図を図6に示す.最頻風向は南-南南西で あるが,風速5m・s・1を超える強風時はほぼ西北 西-北西に限られている.これは季節風の影響だと思 われる.

4.考察

1)積雪の増減とCO2濃度との関係

各年のCO2濃度はおおむね積雪の増減に対応して,増加・減少する傾向が見られる.特にこの3年

間の中では多雪年である1999年でこの傾向は明瞭で ある.この年は観測期間中に大きく3回積雪の増減 があるが,CO2濃度も積雪深のピークとほぼ同時期 に最大値となっている.これは第 章で述べたよう に,積雪は土壌-大気間のガス交換に対する抵抗と して作用するため,その抵抗の厚さ(積雪深)ある いは抵抗の量(積雪重量)と比例関係にあるからだ と考えられる.したがって,土壌面から発生する CO2フラックスがわかっている場合に抵抗としての 積雪の量を与えれば,拡散におけるFickの法則より, 一次近似として積雪層底部のCO2を予測できること になる.

2) 融雪水流下に伴うCO2濃度の低下

一方, CO2の濃度変化には積雪深・積雪重量とは 同期しない短期間の変動が多く含まれている.これ はCO2移動が上述の単純な拡散モデルだけでは記述 できないことを示している.

図7に1994年融雪末期(年通算日35-51日,暦日 では2/14-2/20)のCO2濃度と積雪層底面からの流 出量を示す。図4からわかるように,この頃の気温 は日中は5-10 程度まで上昇し,さかんに融雪が 生じている。CO2濃度は流出水量の増加に対応して 低下し,特に水量の多い38日や40日には,ほぼ大気 中の濃度にまで下がっている。この現象は融雪水が 積雪層の間隙中を流下する際に,間隙内空気に含ま れるCO2を溶解して積雪層から除去したことを示唆 している。

3) 風速の増大に伴うCO2濃度の低下

一方,積雪表層での融雪が生じていないと考えられる時期でも,同様なCO2濃度の低下が生じている. 図8は1999年1月31日 - 2月7日の期間のCO2濃

度,風速,流出水量を10分毎にプロットしたもので ある、下図の流出水量を見ると、2/2と2/3は盛んに 流出がカウントされており,同時期にCO2濃度の低 下が見られる.これは前節で述べたように融雪水に よる溶解だと考えられる.一方,それ以外の期間で は流出のカウントは数時間に1回しか見られない. 流出を計測する流量計はバケット式で,0.5mmに相 当するまで流出水が溜まれば1カウントとなる. 2/2と2/3以外の期間はほぼ1日当たり3カウントだ から日流出量は1.5mmであり,これは積雪底面にお ける融解量と同程度である.すなわち,この期間は 表層で融解して積雪層内を流下する水は,全くない かごく少量だったと推測される.しかし,上図の CO2濃度は数時間単位の変動を示した(上図中の矢 印の期間).最大で約50ppmv程度の低下が見られ, その時期は風速の増大に同期している、したがって これらの濃度低下は風によって積雪層内の空気と大 気との混合が促進された結果だと思われる.

図8風速の増加に伴う濃度低下の例

5.積雪内CO2移動の基礎方程式とモデル化 以上の検討を踏まえて,積雪層内,土壌内のCO2の 移動を記述する基礎方程式を次式のように仮定した.

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} - S + r$$
(1)

ここで, t: 時間, z: 鉛直方向の長さ, C:CO2濃度, D: ガス拡散係数, S: CO2吸収源の強度, r: CO2発生 源の強度である.また,ガス拡散係数Dは,分子ガ ス拡散係数DMと乱流ガス拡散係数DTとの和である.

吸収源強度Sは,3.2で述べたように融雪水による 溶解過程によるものである.気相から液層へのガス 成分の移動は,一次的にはヘンリーの法則より気相 側と液層側における対象気体の分圧差によって生じ る.一方,氷結晶の中に含まれるCO2はごく微量で あるから,融解した直後の融雪水中の溶存CO2量は ほぼ0と見なされるので,溶解量は気相側のCO2濃 度に比例することになる.さらに,溶解する融雪水 の量が多ければ溶解されるCO2量も増えるので,こ れらを考慮すれば,吸収源強度SはCO2濃度Cおよび 融雪水フラックス(=流下速度)に比例する次式で 表わすことが出来る.

$$S = aCv \tag{2}$$

ここで は溶解の効率を特徴づける比例係数である.また,発生源強度rは土壌呼吸を表わしており, 積雪層内については0である.

図9に示すように,土壌層の下面を原点として, 地表面をz=L1,積雪表面をz=L2とする鉛直座標をと る.土壌層を 層,積雪層を 層としてそれぞれ添 え字1,2をつけ,式(1)を各層について書き直す と,

図9 積雪下CO2移動モデルの概念図

積雪のCO2分子拡散係数の測定

1.はじめに

本章では現場で容易に積雪のガス拡散係数を測定 するための装置を試作して,測定をおこなった.

多孔質試料の換気の目安としては通気係数が広く 用いられており,積雪においても測定例は多い(例 えば石田・清水¹⁷⁾, Maenoら²⁵⁾).しかし積雪のガス 拡散係数を直接測定した例は少なく,多くは推定値 である.Solomon and Cerling³⁵⁾は土壌から放出さ れるCO2 フラックスの大きさと積雪層内の濃度勾配 から,CO2についての平均拡散係数を空隙率の一次 式として推定している.また,Sommerfelら³⁶⁾のよ うに拡散係数を単に静止空気中の拡散係数と積雪の 空隙率の積とした例も見られる.直接測定を行った 例としては,Schwanderら³²⁾が南極で採取されたフ ィルンのサンプルについて行った測定がある.CO2 と02の分子拡散係数を測定し,拡散係数が気相率に 反比例するという結果を得ている.また,高見ら³⁹⁾ は定常拡散法を用いてザラメ雪のCO2拡散係数を試 験的に測定し,0.042cm²・s⁻¹を得ている.しかし, 種々の試料について測定をおこない,統計的に検討 した例は見あたらない.これは,1つには不安定な 積雪についてその拡散係数を簡便に測定する方法が 確立されていないためである.

一方, 土壌については多くの測定例があり, 根圏 への酸素供給量の目安として利用されている.本装 置もそれらの測定例(Currie⁹⁾, 遅沢³⁰⁾)を参考にし て作成した.ただし, 土壌による測定では採取した 試料を持ち帰って測定することが可能であるのに対 して, 雪試料は変質を防ぐために,採取した現場で 測定することが望ましい.そこで,装置全体を小型

図10計算に用いた2層モデル

化して持ち運びを容易にする等の改良をおこなった.

2.積雪の分子ガス拡散測定装置

1) 測定原理

図10に示すように,試料室とガス室からなる2層 の系を考える.各室の側面は遮断されており,ガス の移動は鉛直方向に拡散によってのみおこなわれる とする.座標系は試料上端を原点として下向きが正 とする.

まず最初に試料室に蓋をした状態で,試料室とガ ス室の両方をCO2とN2の混合ガス(混合比は1:9) で満たす.次に蓋を取って試料室上端を大気に露出 すると,試料室およびガス室中のCO2は濃度勾配に より大気中に拡散を始める.この時のガス室中の CO2濃度の経時変化を測定することにより試料のガ ス拡散係数を求める.

試料室上端の蓋を取ると試料上端から徐々に濃度 勾配が形成されて試料下端にまで及び,ガス室内の CO2が試料中を通って移動を始める.この時点では 試料室内のCO2濃度勾配は,ほぼ直線状になってい ると仮定すると,試料室内を通過するCO2フラック スF(g·cm⁻²・s⁻¹)は次式で表される.

$$F = -D_s \frac{\partial C}{\partial z} = -D_s \frac{C_{LS} - C_A}{L_s}$$
(5)

ただし、CLsおよびCAは試料室下面および上面に おけるCO2濃度(gCO2*m⁻³),Lsは試料室の長さ(m), Dsは試料のガス拡散係数(m²・h⁻¹)である.なお、 今回の測定ではCAは大気中のCO2濃度に等しいとし た.

一方,ガス室内でのCO2の拡散は試料室内に比べ

て十分に速いため,ここでの濃度勾配を無視すると, ガス室内のCO2収支からFは式(6)で表される.

$$F = \frac{d C_{LS}}{d t} L_g \tag{6}$$

ただしtは時間 (sec), Lgはガス室の長さ(m) で ある.

式(5)および式(6)より,試料室内のCO2濃度 変化に対する次の基礎方程式が導かれる.

$$\frac{d C_{LS}}{d t} = -D_S \frac{C_{LS} - C_A}{L_S L_g}$$
(7)

式(7)を解き,時刻 t=0において,CLs=C0(初期 条件)を代入すると次式が得られる.

$$\frac{C_{LS}-C_A}{C_o-C_A} = \exp\left(-\frac{D_S}{L_g L_s}t\right)$$
(8)

式(8)の両辺の対数をとれば、tに比例して傾き が-Ds/(LsLg)の直線が得られ、Dsを求めることが できる.ただし実際には、蓋をとった直後(t=0) にただちに式(5)が適用されるわけではなく、ま ず、試料内に貯留されているCO2が大気中に放出さ れた後に試料室中に濃度勾配が形成され、フラック スが連続していると見なされるようになる.すなわ ち、測定開始直後はCLsはほとんど変化しないので、 測定開始からの時刻tを用いると、Dsは過小に評価 されることになる.そこで60秒毎のCLsの測定値の 差よりDsを求めた.すなわち時刻 t1,t2 における ガス室内の濃度をそれぞれCLs1、CLs2とすると、式 (8)は、

$$D_{S} = \left\{ \ln \left(\frac{C_{LSI} - C_{A}}{C_{o} - C_{A}} \right) - \ln \left(\frac{C_{LS2} - C_{A}}{C_{o} - C_{A}} \right) \right\} \times \frac{L_{g} L_{S}}{t_{2} - t_{I}}$$
(9)

となる.なお以下の測定では $C_0 = 1.96 \times 10^{-2} \text{gCO}_2 \cdot \text{m}^{-3}$ (体積比率で10%)のガスを用いた.

大気中における分子拡散係数Doは,一般に温度 T (K)のm乗(1.5 m 2.0)に比例し,圧力Pに反比 例することが知られている.

$$D_o = D_n \left(\frac{T}{273.16}\right)^m \left(\frac{1013}{P}\right) \tag{10}$$

ここでDnは標準状態における空気に対する拡散 係数(m^2 ・ h^{-1})で CO_2 - 空気の相互拡散では, D_n = 0.0468,m = 1.83である(梅林⁴³⁾).本報告における 測定では,全圧Pは測定していないため,Pは便宜 上1013hPaと見なして温度補正のみを行い,0 に おける値になおして比較した.

2)装置の時定数

この装置は,ガス室内のCO2濃度の変化速度を測定することにより試料のガス拡散係数を測定する. このため,濃度変化を遅れ時間のないように測定する必要がある.

ガス室内のCO2濃度を測定するセンサーは,第 章の連続観測で用いたものと同じ東亜電波工業製の 携帯用炭酸ガス電極CE-331を用いた.このセンサ ーは化学平衡を用いた測定であるため,特に低温で の応答が遅い.カタログデータでは20 における 90%出力までの応答時間は約120秒となっているが, 筆者らが-2 で測定した結果は約480秒であった. これは,通常用いられる時定数では約300秒にあた る.したがって装置の時定数は少なくとも300秒よ りも大きくする必要がある.

一方,装置の時定数 t_cは,式(8)から

 $t_c = \frac{L_s L_g}{D_s} \tag{11}$

と導かれる.既往の測定例(高見ら³⁹⁾)ではザラメ 雪のDsの値は1.5×10⁻² (m²·h⁻¹)程度と見積もられ ている.ガス拡散係数が積雪密度に反比例すると仮定 した場合,ザラメ雪の密度(0.3~0.4g·cm⁻³)およ び新雪の密度(0.1g·cm⁻³程度)を考慮すると,Ds

図 11 試作した装置の構造

の最大値は 6×10^{-2} ($m^2 \cdot h^{-1}$)程度と見積もられる. この場合, LsL_g の値を0.01 (m^2)とすれば,式(11) より t_c の最小値は1/6hr(600秒)となる.すなわち, ガス室および試料室の長さをそれぞれ0.1m程度にす ればセンサーの時定数の影響は除かれることがわかる.

3)装置の構造と使用法

上述の測定原理に基づいて測定装置を試作した。 (図11, 12). 装置は取り外し可能な試料室と, CO2 センサーを取り付けたガス室,および試料室に取り 付ける蓋からなる.試料室は内径0.071m,高さ 0.104mの塩化ビニル製の円筒で,下端には試料の落 下を防ぐための金網を取り付けた.また,これはサ ンプラーも兼ねており、上端にエッジがついている. サンプラーとして使う時は逆さにして使用する、ガ ス室は内容積445mlのアクリル製の直方体容器で, この体積は試料室円筒と同じ内径に換算すると、 Lg = 0.112mに相当する.ガス室中ではCO2濃度勾配 が0であるという仮定を満たすために、できるだけ 角のない容器を用い,表面積が小さくなるようにし た.ガス室の上面には試料室および CO2センサーの 取付口があり,側面には既知濃度のCO2を含む混合 ガスを送り込むパイプを接続している,蓋はガス室

図 12 装置の外観

と試料室を混合ガスで置換する際に用いる.中央部 にパイプを取り付け,試料上面から出てくるガスを CO2濃度測定用セルに導いて,置換の終了を確認す る.CO2濃度測定用セルのセンサーも携帯用炭酸ガ ス電極CE-331を用いた.

センサーの出力はデータロガー(江藤電気株式会 社製サーモダックE)で60秒毎に記録した.測定を 行う時は,この他に混合ガスのボンベ,延長用のガ スチューブ,データロガー制御用のパソコン等が必 要である.また,装置には温度制御機構がないので, 装置全体を雪に埋めた状態か,または低温室等で測 定を行う必要がある.

測定は以下の要領で行う.まず,試料室を逆さに した状態で,所定の試料を採取する.次に試料室を ガス室に取り付け,試料室の上端が外に出る程度に 装置を積雪に埋める.試料室に蓋を取り付けた後, ボンベのバルプを開いて混合ガスを送り込み,ガス 室・試料室の空気を置換する.この時,蓋に接続し たCO2濃度測定セルによって,完全に置換されたこ とを確認する.置換が終了したらボンベのバルプお よびガス室側のピンチコックを閉じ,蓋をはずして からガス室内のCO2濃度の経時変化を測定する.

土壌における測定例では,まずガス室と試料室を 仕切った状態で,ガス室の空気を初期値ガス(CO2 やN2等)で置換した後にガス室と試料室を連結し, ガス室中のCO2またはO2の濃度変化を測定する (Currie⁹⁾,遅沢³⁰⁾).この方法では,ガス室と試料室 を連結した瞬間の状態が初期条件となるため,ガス の漏れを防ぎながら速やかに開閉できるスライドシ ャッター等の可動部品が必要である.このため,作 成には高精度の加工が必要で,また,装置も複雑に なり,可搬性に欠ける.

我々が採用した方法では,ガス室と試料室は常に 連結されており,試料室の蓋をとることによって測 定を開始する.このため,装置中に可動部品がなく, 装置の小型化が可能となった.また,ガスの漏れ等 の可能性も低くなり,野外での測定における信頼性 が向上した.また,この改良に伴って,拡散係数導 出に用いる初期条件も変更した.

3.装置の検定

本測定方法は,土壌物理における測定法に準拠し たものである.従って,基本的な測定原理等の妥当 性については土壌を対象にして既に実証されてい る.しかし,この方法が積雪を試料とする場合でも 有効かどうかは自明ではないし,本方法では積雪を 対象とするために機構および境界条件を変更した. そこで,実際の測定に先立って,装置の動作確認お よび検定を行った.

測定方法,装置が妥当であると判断するためには, 一般に,同条件で反復して測定をおこなった際の各 測定値の分散が小さいこと,およびそれらの平均値 が真の値に十分近いことが必要である.ここでは, まずガラスビーズ試料を用いて測定値のばらつき を,次にガラス管を用いて絶対値の検定を行った. さらに,均一で長さの異なる試料群の測定値より, 境界条件に関する仮定を検証した.

1)測定値のばらつきの検定

雪の代わりにガラスビーズを試料として,その拡 散係数を測定した.ガラスビーズはほぼ球形で粒径 も揃っているので均質な試料が容易に調製できる利 点がある.ガラスビーズは直径3mm,1mm,0.4mm の3種を用いた.試料室下端の金網の上にティッシ ュペーパーを敷き,ガラスビーズを詰めた.充填は 自然落下で行い,特に締め固めや振動充填は行わな かった.気相率は充填前後の試料室円筒の重量差及 びガラスの密度(2.5g* cm³)より,次式で計算した.

$f = 1 - \frac{m}{\nu \rho_g}$	(12)

ただし , m:試料の質量

∨:試料室の容積

g:ガラスの密度

直径の異なる3種類のガラスピーズを充填した結 果,気相率は以下のようになった(表3).また, これらのガラスピーズの粒径の範囲(カタログによ る値)も示す.

試料を充填した試料室をガス室にとり付け,前述の測定法に従って測定をおこなった.Co=2.04 × 10²gCO₂•m⁻³(体積比率で10%)とし,ガス室内の

表3 用いたガラスビーズ試料の気相率および粒径範囲

種類	気相率	粒径範囲 (mm)
3 mm	0.377	2.500 - 3.500
1 mm	0.386	0.991 - 1.397
0.4mm	0.386	0.350 - 0.500

表4 ガラスビーズ充填層の測定値

粒径	気相率	拡背	拡散係数測定値(cm ² /s)			測定値範囲
mm	v/v	1回目	2回目	3回目	平均値	%
3mm	0.377	0.0325	0.0331	0.0322	0.0326	3.0
1mm	0.386	0.0331	0.0333	0.0326	0.0330	1.4
0.4mm	0.386	0.0335	0.0331	0.0329	0.0331	4.4

濃度がCoの1/100程度になるまで測定を続けた.ま た,試料室の温度は熱電対を用いて測定した.測定 は実験室内で行ったが,CA(実験室内のCO2濃度) を一定に保つため換気を行い,また試料上端の濃度 をCAに保つため,扇風機で1m・s⁻¹程度の風をあて た.センサーからの出力および試料室内の温度は1 分毎にデータロガーで記録した.測定は各直径の試 料毎に3回,計9回行った.

ガス室内のCO2濃度変化,および1分毎に求めた Dsの値を図13,14に示す.測定開始後の数分間はガ ス室内のCO2濃度変化速度は小さく,式(9)で計 算したDsの値は小さい.これは測定開始直後は試料 中の間隙に貯留されているCO2が試料上層から順次 放出されていくので,試料下部の濃度勾配が小さい ためである.tが十分に大きくなると,式(9)で 計算したDsの値はほぼ一定値を示すようになる.こ れは、この区間ではガス室から試料中に入るCO2の 量と試料から大気に放出されるCO2の量とがほぼ等 しい,いわゆる擬定常状態が実現していることを示 しており,式(5)における仮定が適用可能となる. 一方,8000秒を越えた頃からDsの計算値がふらつく のは,ガス室内と大気中のCO2濃度差が小さくなり, 測定間隔(60秒)での濃度変化がセンサーの分解能 に近づいたためである.

以上を考慮して, Dsの計算値のうち, 測定開始直

図14 1分ごとに求めたガラスビーズ充填層のCO2 分子拡散係数.

後の立ち上がりの部分と、測定後半の値が安定しな い区間を除いた部分の単純平均値を求め、それを試 料の拡散係数Dsとした.計算に用いる区間の選定は 目視によって行い、今回の測定では、1200秒~6000 秒とした(表4).なお3種の試料の各3回の反復 はすべて同一の区間で計算を行った.反復回数が3 回と少ないのでばらつきの指標としては標準偏差で はなく測定値範囲を用いている.3種の試料につい ての測定値範囲は最大でも4.4%で、同一条件下で の再現性はほぼ満足できる結果であった.

直径1mmと0.4mmの試料の気相率は同一で,拡 散係数もほぼ等しい値が得られた.ビーズの試料で は構成粒子が球体で相似形であるため,気相率が等 しければ間隙の形状も相似となる.一方,分子拡散 は気体分子の熱運動によって起こるが,その平均行 程は10⁻⁴cmのオーダーである.従って,ここで用い たビーズ試料の粒径では拡散係数は間隙径の影響を 受けず,間隙の総量と拡散経路の屈曲度のみに依存 する.粒径が異なり気相率が等しい試料での測定値 が等しいという結果は,このような拡散の性質をよ く表しており,この装置がガス拡散係数を正しく測 定しているという証拠の1つとなる.

2) 絶対値の検定

多孔質媒体を通るガスのみかけの拡散係数は,拡 散に有効な間隙の断面積に比例し,拡散の経路長に 反比例する.従って,屈曲のない直管を束ねた気相 系の見かけのガス拡散係数を測定して,拡散有効断 面積比で除せば,大気中のCO2の拡散係数が得られ る.これは物性値としてその値がすでに理論的に知 られているので,それと比較することにより測定値 の検定が可能である.

表5 ガラス管を用いて測定した管内の拡散係数

拡散係数測定値 cm ² /s)			平均値	理論値
1回目	2回目	3回目		
0.139	0.145	0.136	0.140	0.138

ガラス管の内径は,管の内部で対流等が起こらな いように,できるだけ小さくする必要がある.遅沢³⁰⁾ によると,内径2.4mm以上では対流等の影響が顕著 になる.今回の測定では,通常市販されているガラ ス管の中では最も細い,内径0.8mmのガラス管を用 いた.

実験は,試料室の円筒中にこのガラス管を490本 束ねて入れ,隙間をエポキシ接着剤で密閉しておこ なった.ガラス管および試料室の長さは0.14mであ る.ガラス管の断面積の総和は2.46cm²,円筒の断 面積は399cm²で,その比は0.0617である.試料室全 体の見かけの拡散係数を測定して,その値を断面積 の比で除して大気中における拡散係数を求める.測 定の条件・回数等はガラスビーズの場合と同様に行 い,測定結果は0 に温度補正して比較した(表5).

理論値と測定値との違いは最大で5%程度で,ガ ラスビーズ試料の測定値における測定値範囲と同程 度である.また測定値の平均値は理論値と1.5%し か違わず,ほぼ等しい値が得られた.従って,本装 置による測定において立てた諸仮定,特に式(5) は妥当であったと判断される.

3)境界条件の検討

2.1で,試料上端のCO2濃度は大気中の濃度に等し いとした.これは,試料表面に形成される濃度境界 層の影響は無視できるということと同義である.こ の仮定を検証するために,均質で長さが異なる試料 を作成して,拡散抵抗を測定した.均一な試料であ れば,試料の長さと試料の拡散抵抗は比例する.従 って試料長と全拡散抵抗の回帰直線が原点を通れ ば,濃度境界層は無視しうることになる.なお,拡 散抵抗とは,拡散係数の逆数を試料長にわたって積 分したものである.

測定には前述の直径1mmのガラスビーズを用いた.振動充填によって気相率を一定(0.376)に調整した4種の試料(長さはそれぞれ,0.156cm, 0.126cm,0.097cm,0.067cmを作成した.測定は各長さの試料毎に3回,合計12回行った.なお,測定

図15 長さを変えた試料の拡散抵抗

4種の長さごとに各3回測定した12回のプロット. 破線は回帰直線

図16 フィールドでの測定風景 手前がセンサー .奥にリング状に見えているのが試料室の上端.

の手順は前項のガラスビーズを用いた測定と同じで ある.

測定した拡散抵抗(図15)はよく直線に乗ってお り,12個の試料による相関係数は0.998であった. また,回帰直線のy切片は0.125hr・m⁻¹であり,y推定 値の標準誤差0.082hr・m⁻¹と同程度であることから, 試料の拡散抵抗以外の抵抗(試料表面の濃度境界層 など)の影響は,測定誤差の範囲におさまると考え られる.すなわち,前述の仮定は正しいことが明ら かになった.

4.積雪における測定例

1) 測定方法

本装置を用いて積雪のガス拡散係数を測定した. 試料は新雪,ザラメ雪,しまり雪の3種である.新 雪およびザラメ雪の測定は1994年の2月から4月に かけておこなった.測定場所は北陸農業試験場(新 潟県上越市,標高11m),妙高高原町池の平(標高約850m),および笹ヶ峰(標高約1400m)である. これらは屋外で測定をおこなった.しまり雪は北海道大学低温科学研究所に保存してあった試料を用い,-5 の低温室内で測定した.

ザラメ雪およびしまり雪は積雪の構造を破壊しな いようにサンプラー(試料室)で採取して測定した. 試料の採取は鉛直方向にのみおこなった.採取は目 視によって同一と見なされる層からおこない,一つ の試料中に異なる層位の雪が入らぬように注意し た.また,新雪は採取時の圧密を防ぐため,風の弱 い降雪時にサンプラーを屋外に放置して内部に積も らせて採取した.屋外で測定する場合は試料を採取 した後,ただちに装置を積雪に埋めて,試料状態の 変化を防いで測定した(図16).

全ての雪試料は,測定前または測定終了後に試料 室ごと重量を測定し,密度を求めた.また,温度補 正をおこなうために測定中は雪試料中に熱電対を差 し込んで雪温も同時に記録した.雪温が0 の場合 には,秋田谷式含水率計を用いて含水率の測定も行 った.

2) 測定結果と考察

測定した積雪の密度は0.1~0.55g·cm⁻³の範囲であ る.これらの雪について測定したCO2拡散係数Dsは, 0 に温度補正した値では0.00864~0.0273m²·hr⁻¹の 範囲であった(図17).拡散係数が最も大きいのは 新雪で,以下しまり雪,ザラメ雪と密度が大きくな るにしたがって拡散係数は小さくなっている.一方, 測定した雪試料には濡れ雪も含まれる(最大含水率 6.9%)が,この範囲内では含水率と拡散係数の間

0.03 4.2% 拡散係数D_S (m²· hr ⁻¹) 0.02 5.8% •<u>6.9%</u> 0.01 ▲ 新雪 ● ザラメ <u>■しまり</u> 0 0 0.1 0.2 0.3 0.4 0.5 0.6 積雪密度 (g· cm⁻³)

図 17 積雪の拡散係数測定値 黒塗りつぶしは乾き雪,白抜きは濡れ雪で,濡れ雪の横の数

字は含水率を表わす

には一定の関係は見られなかった.

拡散係数Dsは実際の拡散速度の大きさを知る上で は都合が良い.しかし,ガスの種類や温度に依存す る量なので,試料のガス拡散能の指標としては,Ds を大気中の拡散係数Dn(CO2 - Airの相互拡散では Dn = 0.0497m²・hr⁻¹(0)(梅林⁴³⁰)で除した相対 拡散係数DR

$$D_R = \frac{D_S}{D_R} \tag{13}$$

を用いる方が便利である.すると,一般に多孔質の 場合,DRは拡散に有効な間隙の体積比率pと拡散経 路の屈曲係数 (経験定数)の積で表される(Van Bavel⁴⁴⁾).すなわち,

$$DR = p \tag{14}$$

一般に雪や土壌などの多孔質では拡散に関与しな い間隙が存在するため,pは一般的には気相率fより も小さい.また,雪などの間隙構造は複雑であるた めにpを直接測定で求めることは実際上不可能であ る.ただし,大部分の間隙が連続していると見なさ れる密度領域(積雪では,圧密によって独立気泡が でき始める密度よりも小さい領域)では,pはfで近 似できるので,

$$DR = f \tag{15}$$

と表す事ができる.図18にD_Rとfの関係を示した. 図中の破線は,最小自乗法によって式(15)を当て はめた直線で, は0.57である.これはSolomon and Cerling³⁵⁾が間接的に得た値 = 0.6とほぼ同じ であった.一方,土壌のガス拡散係数測定では,

として0.66 (Penman,1940,(梅林⁴³⁾より引用)), 0.61 (Van Bavel⁴⁴⁾) 等の値が得られており,積雪よ りも若干大きめである.このように土壌と積雪とで

の値が違うことが両者の間隙形状や充填構造の違いによるものかどうかについては,なお検討を要する.

今回の測定では,ガス拡散係数への含水率の影響 は見られなかった.これは,用いた試料の含水率が 最大でも6.9%と小さかったこと,試料中の空気を 10%のCO2を含む混合ガスで置換したので,液体水 がCO2で飽和しCO2の吸収源にならなかったこと等 によるものと思われる.測定例が少なくこれ以上の 検討はできないが,今後は濡れ新雪に見られるよう な高含水率や,液体水が浸透流下しているような状 態での測定を含めて検討する必要があると思われ る.

風によって生じる積雪層内の乱流拡散の推定

1.はじめに

第 章では積雪間隙内で生じるCO2の分子拡散を 測定したが,本章では風によって引き起こされる乱 流拡散について検討する.風によって引き起こされ る間隙内の空気流動は,地吹雪の発生機構解明や氷 床アイスコアによる古気候再現の精度を見極めるた めの重要な問題であり,盛んに研究が進められてき た.

大気中を吹く風と平行に積雪層内に生じる流れの 速度を測定した例には以下のようなものがある. Ouraら³¹⁾は内部に熱線式風速計を入れた円筒を雪面 下5mmに埋設して積雪内の水平風速を測定し,雪 上風速5~7mにおいて30cm/sを観測した.小林¹⁹⁾ は熱膜式風速計で雪面下5mmの風速を測定し,雪 面上68cmの風速が2~4m/sにおいて9~12.2cm/s を観測した.吉田⁴⁸⁾はそれらの観測結果を総合して, 積雪層内の空気の流れを積雪表面に平行な定常流と 方向が不定な変動流とに分け,理論的な考察を行っ た.

Sokratov and Sato³³⁾は,積雪内に埋設した熱源の 前後の温度分布から計算した熱移流項より水平方向 の空隙内風速を推定する方法によって,雪面上の風 速が5~14m/sにおいて10⁻²m/sのオーダーであるこ とを推定した.

また,風は積雪層内間隙の空気の水平方向の流動 を引き起こすのみではなく,鉛直方向の熱・物質移 動にも大きく関与していることが明らかになってき た.凹凸のない水平な雪面においても、風の乱流に よる圧力変動が積雪内部に侵入し、熱や物質の交換 を促進する(Colbeck⁷⁾⁸⁾, Clark and Waddington⁶⁾, Albert¹⁾, Albert and Hardy²⁾, Sokratov and Sato³³⁾). しかし、土壌から発生するCO2の動態について風の 影響を検討した例はない。そこで、自然積雪におい て大気中のCO2フラックスおよび積雪層内CO2濃度 の測定を行い、積雪下のCO2濃度変動に及ぼす風の 寄与を見積もった。

2.観測

北陸農業試験場(現北陸研究センター)内の水田 圃場において,大気中のCO2鉛直フラックス,およ び積雪層内のCO2濃度の測定を行った.フラックス 測定は超音波式風速計(GILL 1199),オープンパス 式炭酸ガス変動計(ADVANET E009B)を用いた渦 相関法で,測器取り付け高さは地上1.8mである.プ ラットホームは工事現場の足場などで使用される単 管で,これを地面に約0.5m突き刺し,4方に鋼製ワ イアを張って固定した.測定場所の東側には気象観 測露場の建物,南側には貯水池があるが,北西~北 東方向は100m以上の吹走距離を確保している(図 1参照).

サンプリング周波数は25Hzで,フラックスの計算 は20分間隔で行った.なお,顕熱測定における気温 測定には超音波風速計による値を用い,気象観測露 場で測定された湿度および大気圧を用いて補正し た.ただし,湿度は10分毎の測定値を用いたが,大 気圧は毎時の値しか記録しなかったので,3次スプ ライン補完によって10分毎の値を推定して用いた.

積雪層中および大気中のCO2濃度はクローズドパ ス式炭酸ガス濃度計(LICOR LI6262)を用いて測 定した.積雪層内(地上0.17m)および大気中(地 上1.8m)に設置した取り入れ口より吸引し,内径4 mmのシリコンチューブで約10m離れた場所に設置 した百葉箱内の濃度計に導いた.なお,積雪層底部 (地上0.02m)にも取り入れ口を設置していたが,観 測期間中に地表面滞留水が入って吸引不能になった ので,本章における解析には用いていない.

大気中の濃度は10分毎に測定したが,積雪層内の 濃度については層内の空気を極力乱さないように1 時間毎の測定とした.吸引流量は約800ml・min⁻¹で, チューブ内の空気(約150ml)の入れ替わりと濃度 計の安定に要する時間を勘案し,1回の吸引時間は 40secとした.解析には,1時間毎の測定値を3次 スプライン近似によって補完して得た20分毎の値を 用いた.

炭酸ガス濃度計および炭酸ガス変動計は,設置前 に1000ppmv CO2標準ガスおよび窒素ガスを用いて 校正を行った.

風速・積雪深・積雪重量・降水量・積雪底面流出 水量・気圧およびその他の気象要素は,観測をおこ なった圃場の東側に隣接した気象観測露場で測定し た.風速の測定高度は地上5.25mである.

3. 観測結果

観測期間全体の積雪状態・CO2濃度およびフラッ クスの推移を図19に示す.観測期間中は2回の積雪 期間があり,最深積雪は約0.6mであった(図19a). 大気中(地上1.8m)のCO2濃度Caはおおむね0.71~

積雪深と積雪重量は隣接した気象観測露場で測定. CO2フラックス測定高度は地上 1.8m 0.75gCO2・m⁻³ (約360~380ppmv)で推移したが,2 月上旬は0.8gCO2・m⁻³近い濃度も観測された.地上 0.17mにおけるCO2濃度Csは,積雪深がこの深さを 超えると上昇をはじめ,最大で1.0gCO2・m⁻³程度で あった(図19b).積雪荷重も同じ頃に約100kg/m²の 最大値を記録した.CO2フラックスは降水時には測 定値が激しく変動して測定不能であったが,それ以 外の期間ではおおむね0.01-0.03gCO2・m⁻²・h⁻¹程度で あった(図19c).

4.解析に用いる期間の切り出し

第 章で述べたように, CO2は水に対して易溶性 であるため, 融雪が生じている期間は積雪層内の CO2の一部は融雪水に溶解されて濃度が下がる.本 稿の目的は風によって生じる積雪内のCO2フラック スおよび濃度への影響を検討することなので, 融雪 水による影響は切り分ける必要がある.そのため, 24時間の底面流出水量が5mm以下である期間のみ を解析に用いる事とし, さらにフラックスを用いる 解析では以下のような条件に合致するおおむね10時 間程度の期間を抽出した.

- ・積雪が存在する
- ・フラックス測定値のノイズがない
- ・期間中の風向が十分な吹送距離のある北よりで ある.

さらにCO2濃度も用いる解析では,下側の吸引口 が積雪内にある期間,すなわち積雪深が0.17mを超 えている期間を用いた.ただし,これだけではサン

表6 解析に用いた期間

"Flux " はフラックスのみを用いた解析, "Flux & Conc." はフラックスと濃度の両方を用いた解析.

date	time	Flux	Flux & Conc.
2 Feb. 2002	00:00-12:00		
4 Feb. 2002	18:00-24:00		
7 Feb. 2002	00:00-12:00		
12 Feb. 2002	00:00-12:00		
12 Feb. 2002	12:00-24:00		
14 Feb. 2002	00:00-12:00		
14 Feb. 2002	12:00-24:00		
16 Feb. 2002	00:00-12:00		
17 Feb. 2002	00:00-12:00		
18-19 Feb. 2002	15:00-next12:00		
21 Feb. 2002	00:00-24:00		

プル数が少なすぎるので,積雪深が0.17mを超えた 期間のうち,若干フラックス測定値にノイズが含ま れる期間も含めた.

表6に抽出された期間の一覧,図20にその一例を 示す.図20の期間はフラックス解析・濃度解析のど ちらの条件にも合致している例である.2月17日未 明より風速が増大を始め,6:00ごろに約5m・s⁻¹と なり,昼前に収まった.これに同期してフラックス は増大し,濃度は低下している.濃度のカープを見 ると,低下が始まる時刻は風速の増大開始に比べて 数時間おそく,また風速低下後の濃度回復もやや遅 れている.風によるフラックスの増大が積雪層の表 層付近で生じ,これに伴って積雪層内の濃度プロフ ァイルが変化しているものと想像される.

また,表6の各期間についてプロットした風速と フラックスとの相関を図21に示す.フラックスの測 定値が不安定なためばらつきは大きいが,どの期間 についても風速の増大とともに上向きフラックスが 大きくなる傾向が見られる.これら各期間について, それぞれの測定値を直線近似した際の傾きを求め, 積雪深に対してプロットしたのが図22である.この 傾きが大きいほど上向きフラックスが風速に対して 鋭敏に増大することを示しており,積雪深が小さい ほど,風による影響を受けやすいことがわかる

5. 乱流拡散係数の推定

1) 全拡散係数 (DM+DT) の推定

一般的に風のような媒体の流れによって生じる移動は移流(マスフロー)であるから,鉛直一次元の拡散方程式においては式(16)の第2項のように鉛直方向の流速vと濃度勾配との積で表現される.

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} + v \frac{\partial C}{\partial z}$$
(16)

ここでD:**拡散係数**,t:時間,z:距離(高さ)で ある.

大気中の風の乱流によって雪面に加えられる鉛直 方向の圧力は数Hz ~ 数十Hzの周期で向きを変え, この周期よりも十分に大きな時間スケールで平均す るとほぼ0になる.したがってこの圧力変動を駆動 力とする空気の移動は,流れというよりもむしろ振 動に近いものだと考えられる.これは吉田⁽⁶⁾が提唱 した「変動雪内気流」と同じものである.

図 21 **風速に対する** CO2**フラックスの変化** 凡例の"sd"は積雪深.

一方,風によって生じる積雪層内の水平方向の空 気の移動は大気中と同様に方向性を持った流れであ り,その流速は雪面から深くなるにしたがって速や かに減少する(たとえばAlbert³⁾, Sokratov and Sato³³⁾. この風速減少分に相当する運動量は積雪間 隙の壁面との摩擦によって生じる微細な渦として消 費される.

このように,雪面に直接かかる圧力に由来するも のであれ,間隙中の水平流と壁面との摩擦に由来す るものであれ,積雪層内空気の鉛直方向の動きは振 動ないしは渦であり,流れとして扱う式(16)を適 用するのは不適当であると考えた.そこで,大気中 あるいは植物群落中などにおける乱流拡散と同様に 取り扱うこととした.

風が吹いていない場合,地表面から放出された CO2が積雪層中を拡散して大気に放出されるCO2フ ラックスFはFickの法則に従って次式であらわされ る.

$$F = -D_M \frac{\partial C}{\partial z} \tag{17}$$

ここでDMは積雪層内におけるCO2の分子ガス拡散 係数である.

風が吹いた場合に積雪層内に生じる空気の振動に よる乱流拡散係数をDrとして式(17)に加えると式 (18)のようになる.

$$F = -D_M \frac{\partial C}{\partial z} - D_T \frac{\partial C}{\partial z} = -(D_M + D_T) \frac{\partial C}{\partial z} \quad (18)$$

したがって,Fおよび積雪層内のCO2濃度勾配か ら式(18)を用いて,見かけ上の全拡散係数 (D_M+D_T)を求めることができる.また,第 章の 結果より分子ガス拡散係数D_Mは気相率から求める ことができるので,これを減じれば乱流ガス拡散係 数D_Tが推定できることになる.

濃度勾配 ∂C/∂z は,地上0.17mにおけるCO2濃度 Cs,積雪表面におけるCO2濃度Cs2,および積雪深よ り求めることができる.ただしCs2は測定していな いので,フラックスを式(19)で計算されるバルク 係数と風速で除して得た大気中の濃度差(Cs2-CA) をCAに加えて求めた.

$$B = \frac{k^2}{\{\ln((z_A - SD) / z_0)\}^2}$$
(19)

ここで,k:カルマン定数(0.4),zA:CA測定高度 (1.8m),SD:積雪深,z0:雪面の粗度(1×10⁻⁴m) である.

以上のようにして求めた C_{S2} と地上0.17mにおけ る CO_2 濃度 C_S との差を0.17m減じた積雪深で除し て $\partial C/\partial z$ の平均値とし,これを式(18)に代入して ($D_M + D_T$)bs.を求めた. D_M が全層平均値であるのに 対して($D_M + D_T$)bs.は地上0.17mよりも上の部分の 平均値である.このため,($D_M + D_T$)bs.に含まれる D_M は前者と同じものではない.この点については 後で検討する.

図23に,抽出された期間について求めたD_M, (D_M + D_T)_{obs.},および風速を示す.気層率より求めた D_Mは0.017~0.028m²・h⁻¹程度なのに対し(D_M + D_T)_{obs.}

図23 拡散係数(上図)および風速(下図)

(DM+DT)obs.は測定されたCO2濃度およびCO2フラックスより求めたもの.DMは積雪気相率から求めたもの.

は変動が大きく最大で0.2m²・h⁻¹程度であり,大まか には風速の変動に同期する傾向が見られる.これは, 積雪と同様な多孔質媒体である土壌について得られ ている結果(Fukuda¹⁴⁾、Farrellら¹²⁾)とも一致する.

2)風速による近似

(D_M + D_T)_{obs}.とD_Mとの差を風速に対してプロットしたのが図24である.風速が4m·s⁻¹以下ではほぼ一定値で,風速が増すにしたがって値も大きくなる傾向が見られる.

流れと鉛直方向の混合の原因である微細な渦は壁 面と流体との摩擦によって生じるが,管路の場合, その動摩擦係数は管内平均流速の約2乗に比例する 事が知られている.そこで,上空の風速と積雪層内 の水平方向の流れとが比例すると仮定して,(DM+ Dr)obs.とDMとの差を風速WSの2次式として近似し て,式(22)の近似式を得た.

$$(D_M + D_T)_{obs.} - D_M = 0.0022WS^2 + 0.0014WS - 0.02$$

(22)

WS=0m・s⁻¹の場合はDT=0m²・h⁻¹なので,理論上 は,濃度とフラックスから求めた(DM+DT)obs.は 気相率から求めたDMと一致し,右辺第3項は0m²・ h⁻¹となるはずである.先に述べたように,今回の観 測では(DM+DT)obs.とDMとでは対象となる深さが 異なる.しかし通常の積雪では下層ほど気相率が小 さい(DMが小さい)ので(DM+DT)obs. DMとなる はずである.

もちろん,しもざらめ層が形成された場合などの ように,単純に下層ほど気相率が小さくならない場 合は多々見られる.しかし観測を行った2つの積雪

図24 推定された乱流拡散係数Drの風速に対する相関 図23の全期間についてまとめたもの.

継続期間は,どちらも期間の最初に降った一連の降 雪によって形成された積雪が単調に減少していく傾 向だったので,大きく性質の異なる層構造は形成さ れていないと推測される.また,積雪継続期間を通 じてほぼ毎日融雪流出が観測されていたことから, 全層が濡れ雪で単調にザラメ化していったものと思 われる.

したがって地上0.17mより下の積雪の気相率がそ れより上の積雪の気相率よりも大きかったとは考え にくく、定数項が負値となる理由を対象とした深さ の違いに求めるのは無理がある.また、図24にプロ ットされた点の下限は式(22)の定数項とほぼ同じ 値に集中しており、縦軸の原点が約0.02m²・h⁻¹だけ シフトしているように見える.(DM+DT)bbs.は風に よって変動する値だからプロットの下限が一定値と なることは考えにくいので、この定数項の主な要因 は左辺第2項のDMに含まれる誤差によるものだと 考えられる.また、その値は風速が大きい時のばら つきに対して十分に小さいことから、無視しても支 障はないと判断して消去し、式(22)左辺をDrとみ なして式(23)とした.

$$D_T = 0.0022WS^2 + 0.0014WS$$
 (23)

3)積雪深による近似

積雪中の空気流動の水平成分は積雪表面から深く なるにしたがって減少する.このため,乱流拡散係 数Drも雪面付近では大きく,下層では小さくなって いるはずである.一方,式(23)から得られるDrは 対象としている積雪層(この場合は地上0.17mから 上の部分)の全体について平均した値であるから, 同じ風速でも積雪深が大きい場合には増加分を過大 評価し,逆に積雪深が小さい場合には過小評価をし ていることになる.この影響を見るために,式(23) で推定したDrをDrwindとして、これに対する実測値 Dr (図24における (DM + Dr)bbs. - DM)の比を,対象 とする積雪深SD(0.17mを超える部分の積雪の厚さ) に対してプロットした (図25). 相関は低いが,積 雪深が大きくなると,推定したDTwindが実測値DTに 対して大きくなる, すなわち風の影響を過大評価す る傾向が見て取れる.そこで,これを直線近似した 式(24)を式(23)に代入して,風と積雪深の影響 を考慮した式(25)を得た.

図25 風速で近似した乱流拡散係数Drに対する実測 値の比

値が小さいほど,風速による乱流拡散係数増加を過大評価して いることになる.

$$\frac{D_T}{D_{Twind}} = -2.075SD + 1.001$$
(24)

なお,Drが負となることはないので,式(24)の 回帰は0に漸近するような関数で行う方が理にかな っている.しかし,図25ではデータのばらつきが大 きく,曲線で近似するだけの合理性がないと判断し

1.はじめに

本章では,融雪水によるCO2溶解の効率を表わす 係数の値について検討する.第 章で述べたとお り,本論文では積雪層内におけるCO2吸収源の強度 SはCO2濃度Cと融雪水フラックスvとに比例すると して以下のように仮定している.

$$S = a C v \tag{26}$$

この式は理想気体の液体への溶解を記述したヘン リー則と同じ形だが、ヘンリー則は十分に長い時間 気液が接して溶解平衡に達した状態の記述なので、 その平衡定数(ヘンリー係数)を流下している融雪 水についての として適用する事はできない.また、 ここで取り扱っているCO2のような数百ppmv程度の 気体の場合、気液接触系における物質移動速度はほ

図26 各積雪深における風速と乱流拡散係数との関係 式(25)によって計算されたもの.各線上の数字は積雪深.

た.このため,式(25)では式(24)のx切片であ る積雪深0.48mで場合わけを行って,これを超える と全層で平均したDrに対する風の影響は無視できる とした. 図22に示した上向きフラックス強度の風 速に対する鋭敏度も積雪深の増加とともに減少して いるが,このプロットを結ぶ直線を外挿したときの x切片も積雪深0.5~0.6m前後になるので,ここで採 用した0.48mという閾値はほぼ妥当であると判断し た.

図26は式(25)で計算した各積雪深毎のDrを風速 に対してプロットしたものである.

.溶解係数 の検討

とんど液側の拡散抵抗と接触面積とによって決定される.しかし,液側の拡散抵抗は,液体層の厚さや液体内部の流動の有無によってさまざまに変化する.特に融雪水の流下については,皮膜流や経路流などの形態の違いがあり,その速度も10⁻³cm・s⁻¹から数cm・s⁻¹まで広いバリエーションをとりうるため(吉田⁴⁷⁾,若浜⁽⁵⁾,藤野⁽³⁾),を理論的に導く事は容易ではない.

そこで,本論文のモデルにおいては の値は経験 的に定めることとし,積雪層内のCO2濃度と融雪水 内の溶存CO2量の測定を行って導出した.さらに, CO2(炭酸イオン)の水への溶解係数は他の溶存イ オン量,特に酸性度に大きく影響を受けることから, 融雪水の溶存イオン濃度が に及ぼす影響について も検討した.

2. の導出

第 章で述べた積雪層内の基礎方程式(式4)を 再掲する.

$$\frac{\partial C_2}{\partial t} = D_2 \frac{\partial^2 C_2}{\partial z^2} - a v_2 C_2 \qquad (L1 \ z \ L2)(27)$$

ここで, CO2吸収項(右辺第2項)は積雪内の任 意の高さにおける吸収量を表わしているから,これ を地面から積雪表面まで積分すれば,積雪層全体か ら溶かし去られたCO2量となる.これは積雪層底面 から排出された融雪水(底面流出水)に溶存してい るCO2量と等しいはずであるから,次式が成り立つ.

$$\int_{L_1}^{L_2} \alpha \, v_2 \, C_2 dz = v_2 \, C_{bd}$$
 (28)

L1, L1はそれぞれ地表面と雪面の高さ, Cbdは融雪 水中のCO2濃度である.

ここで簡単のために積雪層中のCO2濃度勾配は直 線と仮定する.すなわち

$$C = (C_{s} - C_{A}) \frac{L_{2} - z}{L_{2} - L_{1}} + C_{A}$$
(29)

ここでCs:地表面(積雪層底面)におけるCO2濃度,CA:積雪表面のCO2濃度,z:座標原点(土壌層 底面)からの高さである.

これを用いて式 (28) 左辺の積分を実行すると, 次式が得られる.

$$\frac{\alpha v C_s (L_2 - L_I)}{2} = v C_{bd}$$
(30)

よって

$$\alpha = \frac{2C_{bd}}{C_s (L_2 - L_1)}$$
(31)

すなわち は溶解CO2濃度と気相側のCO2濃度と の比に比例し,積雪深(L2-L1)に反比例する量と なる.積雪深が大きくなるほど が小さくなるとい うことは,融雪水がCO2を溶解しつつ流下する距離 が長くなるほど溶解能が低下することを意味してい る.言い換えれば,深い積雪は浅い積雪に対して層 内に多くのCO2を貯留しているから,同量の融雪水 が流下した場合,深い積雪の方が層内のCO2濃度の 低下が少ない,ということである. したがって,積雪深によらず「溶解のしやすさ」 を表わす指標としては, そのものよりも に積雪 深を乗じたものの方が適切である.そこで,次式の ように無次元量 'を定義して,以下はこれを用い て解析する.

$$\alpha' = \alpha \times (L_2 - L_1) = \frac{2C_{bd}}{C_s}$$
(32)

3. 観測方法

1999年1月13日から3月11日の期間,北陸農業試 験場(現北陸研究センター)の気象観測露場内の裸 地において,積雪層底部のCO2濃度,および融雪水 の溶存CO2,酸性度および電気伝導度の測定を行っ た(図1参照).積雪層底部のCO2濃度の測定は第 章で説明した通りである。

融雪水試料は,積雪層底部CO2濃度の測定点近く の地表に設置したプラスチック製雨どい(0.1m×2 m)で集め,ナイロンチューブで地下トンネル内に 設置した200mlのアクリル製水槽に導いた(図27). 水槽に挿入したpH(Denver Ins. MODEL15),EC (HORIBA ES-12),溶存CO2濃度(東亜電波 CE-331)の各センサーで10分毎に自動測定を行いつつ, オーバーフローした分をプラスチック製試料瓶に貯 留し,毎日9時に採取してpH測定およびイオン分 析を行った.挿入した各センサーの挿入部分の体積 は合計約60cm³で,図27に示した水槽の実容量は約 140mlである.雨どいの面積は0.1×2=0.2m²なので 融雪約0.7mm分の水量で容器中の水が入れ替わるこ とになる.

また,気象観測露場芝生上の積雪表面にプラスチ ック製バット設置して降雪および降雨を貯め,毎朝

9時に採取してpH測定およびイオン分析も行った. なお,イオン分析は財団法人上越環境科学センター に委託した(機種:DIONEX DX-100 - AQ).

4. 観測結果

1)自動測定と手動測定との比較

イオン濃度は日量の測定であるのに対して,融雪 水中のCO2濃度はオーバーフローさせながら10分毎 に自動測定したものである.両者を比較して解析を 行うためには,自動測定による10分毎の値を日平均 したものが日値とみなせることが必要だが,融雪速 度(単位時間当たりの融雪量)は常に変化している ため,両者は厳密には一致しないと考えられる.そ こで,自動測定と日単位の手動測定との両方を行っ たpHについて,両者を比較した(図28).低pH領域

図28 自動測定のpHとマニュアル測定のpHとの比較 自動測定は10分毎のデータの単純平均値.マニュアル測定は1 日分貯めた融雪水について測定

図30 積雪深(上),積雪層内 CO2濃度および融雪 水溶存 CO2濃度(下)

でややばらつきが大きいが、ほぼ1:1の相関が見 られた.なお、回帰線の傾きが1よりも若干大きい のは、測定に用いたpHセンサーのキャリプレーシ ョン誤差だと思われる.また、自動測定のECと日 単位で測定した全イオン濃度との間にも同様に良好 な直線関係が見られた(図29).これらより、自動 測定による値から計算した日平均CO2濃度を用いて 日単位の解析を行っても問題はないと判断した.

2) 融雪水および積雪層内空気のCO2濃度

観測期間中の最深積雪深は約1.1mであった.積雪 層底部の空気中CO2濃度はおよそ積雪深の増減に同 期して推移し,最大で約3gCO2・m⁻³(約1500ppmv) であった.融雪水中の溶存CO2濃度も大まかには積 雪層底部のCO2濃度と同様の増減を示したが,時々 鋭いピークが見られた(図30).

図29 自動測定のECとマニュアル測定の全イオン 濃度との比較.

> 自動測定は10分毎のデータの単純平均値.マニュアル測定は1 日分貯めた融雪水について測定

表7	降水中	に含まれ	るイ	オン	/濃度
			_		

陽イオン	,	陰イオン	
種類	重量 (mg)	種類	重量 (mg)
Na	2878	Cl	3609
NH-4	288	NO2-N	0.5
Κ	143	NO3-N	146
Mg	312	SO 4	1521
Ca	253		

3)イオン組成

分析を行ったイオンの種類,および観測期間中の 降水に伴う沈着量を表7に示す.これは毎朝9時に サンプリングした降水試料中の各イオン濃度に,日 界を9時とする降水量を乗じたものを期間で積算し たもので,1m²あたりの値である.

陽イオンでは約3/4がナトリウムイオン,除イオ ンでは約2/3が塩化物イオンであり,北よりの季節 風による海塩の影響を反映している.

降水および融雪水中の陰イオン濃度の日々の変化 を図31および図32に示す.どちらも大きく変動して いるが,その変動幅は降水の方が大きい傾向にある. 融雪水では16日に特異的な高濃度が見られ,あとは 28日,42日,49日頃を中心としたピークがある.こ れらのピークは融雪が卓越している期間(積雪層当 水量が減少している期間)に見られることから,表 面で発生した融雪水が積雪内を流下する際に下層の 積雪粒子から溶け出したイオンによるものだと推測 される.

図 31 降水中の陰イオン濃度

図 32 融雪水中の陰イオン濃度

5.検討

1時間毎に平均したCbdおよびCsで計算した を図33に示す(図中のD図).比較のために積雪深 (A図)・流出水量(B図)・融雪水pH(C図)の値も 並べている. 'の平均値は約0.1だが,融雪が盛ん な時期には0.3程度まで上昇する、なお、筆者らが 以前積雪下CO2濃度のシミュレーションを行った時 は,積雪深の影響を考慮せずに を定数として扱っ た(小南ら, 1998). の値を逐次変えて計算を行い, 解と実測値との差が最も小さくなる値を模索した結 **果**, =1.5m⁻¹が得られた.代表的な積雪深として (L2-L1) = 0.3mを式(32)に代入すると '= 0.45と なり、ここで得られた の平均値よりもかなり大 きい.これは溶解量が と融雪量との積に比例する ため,融雪の盛んな時期(が最大値となる時期) に重みづけされた結果であると思われる.

はまた,全体としては期間の後半に漸増して おり,スパイク状のピークはpHの低下と同期して 生じている.ただし,流出水量の増加とpHの低下 との間にも相関が見られるので,どちらが の値 を規定しているのかは不明である.

図34に1時間毎に平均した融雪水のpHと 'との 関係を示す.弱いながらも負の相関が見て取れる.

'はCO2の融雪水への溶けやすさを表わす係数な

ので,本来ならばpHの低下と共に減少するはずで ある.これが逆のセンスとなっているのは,CO2の 溶解によって融雪水pHの低下が引き起こされてい ることを示唆するが,pHと溶存CO2濃度との間には 明瞭な相関は見られなかった(図35).

また,底面流出水量と どの間には,1時間単位(図36)においても日平均値(図37)においても 相関は見られなかったが,流出水量が増加するにつ れて0.1程度の一定の値に収束する傾向はうかがわ れた.

'と融雪水の溶存イオン濃度との関係について は,どのイオンについても有意な相関は見られなか った.一例として硝酸イオン,硫酸イオンと 'の 日変化を図38に示す.CO2(炭酸イオン)の溶解は 強酸イオンの存在によって阻害されるため,これら 硝酸イオン,硫酸イオン濃度の高い日は 'は小さ くなるはずであるが,そのような結果は,この観測 からは得られなかった.

以上の結果をまとめると,融雪水に溶解したCO2 が融雪水のpHを低下させている可能性は示唆され たが, を規定する要因については有意な要因は 見出せなかった.上で述べたように,気液の反応に は接触面積や接触時間等の要因が大きく影響するの で,単に時間当たりに排出された融雪水の量のみを パラメタとするのは不適当なのであろう.今回の観 測では雪質のデータは採っていなかったが,接触面 積に最も関連が深い指標である比表面積は雪質によ

図36 底面流出水量と溶存 'との相関 1時間平均値

って大きく変化するため, の大きさを検討する としたい. 上で,重要な要素だと思われる.これは今後の課題

積雪下CO2濃度予測モデル

1.はじめに

以上,第 章から第 章まで,それぞれ,積雪の 分子拡散係数,風による乱流拡散係数,融雪水によ る溶解プロセスについて論じてきた.しかし,乱流 拡散係数Drと溶解係数 (正確には に積雪深を乗 じた ')についてはそれぞれ1寒候期の観測結果 から導いたもので,その妥当性は検証されていない. そこで,本章ではそれらの結果を総合した積雪層内 CO2移動モデルを構築し,乱流拡散係数Drと溶解係 数 の推定に用いなかった1991年・1994年のデータ を用いて各パラメタの妥当性を確認する.また,土 壌におけるCO2発生強度についても検討し,その推 定法を提案する.

さらに,シミュレーションの結果を用いて,積雪 層内のCO2収支に及ぼす風と融雪水の寄与について も検討を行う.

2.シミュレーション

1) モデルの構造

第 章で示したとおり,モデルは土層(層)と

図39 モデルの概念図 横軸はCO2濃度,縦軸は 層底部からの高さを表す.モデルは 層, 層からなる鉛直1次元モデルで, 層においてCO2が 発生し, 層を通って大気中に拡散する. 積雪層(層)の2層からなる鉛直1次元モデルと する(図39).座標は 層下端が原点,上向きが正 で,層と層との境界の座標をL₁,層の上端を L₂とする.ただし,層は耕起などの影響がおよぶ 作土層とし,層下端においてCO2の移動は遮断さ れていると仮定した.観測をおこなった新潟県上越 地域は重粘土地帯であり,作土層の下にはきわめて 通気性の悪い還元性の粘土層が存在するため,この 仮定は妥当であると思われる.なお,層の厚さは 30cmとした.

CO2は 層内で一様に発生し, 層を通って大気 中に放出されると仮定した.なお,地表の植生によ る呼吸も土壌呼吸に含めている.モデル化する地表 はムギ圃場(1991,1994)裸地(1999),水田(2001) と異なるが,ムギ圃場については積雪開始期の草丈 は3~5cm程度で小さく,積雪下では地表面に密 着していることから土壌呼吸と区別する必要はない と考えた.

基礎方程式は以下である(式3,式4を再掲).

$$\frac{\partial C_1}{\partial t} = D_1 \frac{\partial^2 C_1}{\partial z^2} - a v_1 C_1 + r \qquad (0 \ z \ L_1)(33)$$

$$\boxed{R}:$$

$$\frac{\partial C_2}{\partial t} = D_2 \frac{\partial^2 C_2}{\partial z^2} - a v_2 C_2 \qquad (L1 \ z \ L_2)(34)$$

C₁, C₂はCO2濃度 (gCO2・m⁻³) D₁, D₂はガス拡散 係数 (m²・h⁻¹), V₁, V₂は融雪水流下速度 (m・h⁻¹), は溶解係数 (m⁻¹), r は単位体積あたりのCO2発生 強度 (gCO2・m⁻³・h⁻¹) で,添字1,2はそれぞれ

層、層についての量を示す。

第 章の結果より, 層の拡散係数D2を分子ガス 拡散の成分D2Mと乱流ガス拡散の成分D2Tに分離し, さらに第 章で導いたように無次元量 'を用いて 式(33),(34)を書き直すと以下のようになる.

$$\frac{\partial C_1}{\partial t} = D_1 \frac{\partial^2 C_1}{\partial z^2} - \frac{a' v_1 C_1}{L_1} + r \qquad (0 \ z \ L_1) (35)$$

層:

$$\frac{\partial C_2}{\partial t} = (D_{2M} + D_{2T}) \frac{\partial^2 C_2}{\partial z^2} - \frac{a' v_2 C_2}{L_2 - L_1}$$

(L1 z L2)(36)
ただし

	$(-2.075SD + 1.001) \times (0.0022WS^2 + 0.0014WS)$
$D_T = $, for $SD \le 0.48$
	0, for $SD \ge 0.48$

境界条件は以下である.

1

・土層底面ではCO2の移動はない

$$\left. D_1 \frac{\partial C_1}{\partial z} \right|_{z=0} = 0 \tag{37}$$

・地表面においてCO2濃度は連続している.

1

$$D_{1}\Big|_{z=L_{1}} = D_{2}\Big|_{z=L_{1}}$$
(38)

・地表面においてCO2フラックスは連続している.

$$D_1 \frac{\partial C_1}{\partial z}\Big|_{z=L_1} = D_2 \frac{\partial C_2}{\partial z}\Big|_{z=L_1}$$
 (39)

・積雪表面においてCO2濃度は大気中に等しいと 見なされる.

$$C_2\Big|_{z=L_1} = C_A \tag{40}$$

ここで C_A は平均的な大気中 CO_2 濃度($0.70gCO_2$ ・ m⁻³,約350ppm)を与えた.第 章で計算したよう に大気中の CO_2 濃度勾配は積雪層中に比べて非常に 小さく,また積雪表面粗度も小さく($0.5 \sim 10 \times 10^{-4}$ m, 武田ら,1992)層流底層も薄いため,本モデルでは 積雪表面より上の CO_2 濃度は一定であるとした.ま た,は実測された底面流出量を与え,は当試験場内 の圃場における地表面排水量と暗渠排水量との比よ り, $v_2/10$ とした.

以上の各式を無次元化した後に差分化して数値計 算をおこなった.その際, L_1 , L_1^2/D_1 および C_A を それぞれ代表長さ,代表時間,代表 CO_2 濃度とした. すなわち式(35),(36)は無次元化によって次式に 変換される.

$$\frac{\partial \phi_1}{\partial \tau} = \frac{\partial^2 \phi_2}{\partial \xi^2} - a' v_1 C_1 + \varepsilon$$
(41)

$$\frac{\partial \phi_2}{\partial \tau} = \frac{D_{2M} + D_{2T}}{D_1} \frac{\partial^2 \phi_2}{\partial \xi^2} - \frac{L_1}{L_2 - L_1} a' v_2 \phi$$
(42)

ただし, Φ₁, Φ₂ は無次元化したCO2濃度, τ は無 次元化した時間, ^ξ は無次元化した長さ, ν₁, ν₂ は無次元化した融雪水流下速度, ε は無次元化し たCO2発生強度である.

数値計算に用いたスキームは,陰的差分法の一種 のクランク-ニコルソン法である.このスキームは, 時刻に関する偏導関数は前進差分近似,空間に関す る偏導関数は時刻 および + における中心差 分近似の単純平均で表す.これによって格子点(,,

)における式(41)および式(42)の偏導関数は, それぞれ次式で表される(簡単のため 層, 層を 表す添字は省いている).

$$\frac{\partial \phi}{\partial \tau} = \frac{1}{\Delta \tau} \left(\phi_{\xi, \tau + \Delta \tau} - \phi_{\xi, \tau} \right)$$
(43)

$$\frac{\partial^{2} \phi}{\partial \xi^{2}} = \frac{0.5}{\Delta \xi^{2}} \left(\phi_{\xi + \Delta \xi, \tau + \Delta \tau} - \phi_{\xi, \tau + \Delta \tau} + \phi_{\xi - \Delta \xi, \tau + \Delta \tau} \right) + \frac{0.5}{\Delta \xi^{2}} \left(\phi_{\xi + \Delta \xi, \tau} - \phi_{\xi, \tau} + \phi_{\xi - \Delta \xi, \tau} \right)$$
(44)

ただし、 は時間刻み幅、 は長さの刻み幅で ある.これらを式 (41)(42)に代入し、 $0 \le \xi \le (L_{t+L_{2}})/L_{1}$ の各格子点で時刻 + における ϕ を求める.な お格子の間隔は、 = 0.033, = 0.014とした. これは現実の長さ、時間ではそれぞれ1 cmおよび 10分に相当する.

また, 層の厚さは積雪深の増減にともなって変 化する.モデルは鉛直方向の刻み幅を固定している ので, 層の格子数が変化することになる.そこで, 以下のような操作をおこなった(図40).積雪深が 増えた場合には増えた分の積雪中の空気のCO2濃度 はCAとする.これはもともと大気中であった空間に 雪粒子が堆積したことを表現している.積雪深が減 った場合には積雪中のCO2濃度には影響がなく,積 雪のみが取り去られたとして,^{Z=L}2における境界条 件をそのまま使用した.これは,季節的積雪地帯で 見られる積雪では積雪内部の空気は外部大気と連続 しており,圧密に伴って圧縮されることはないこと による.これは積雪全体についても同様で,圧密に

積雪深が増加する場合

積雪深が減少する場合

積雪深の増減に伴う 層上端におけるCO2

 L2(t)およびL2(t+ t)はそれぞれ時刻t,時刻t+ tにおける 層上端の位置.CL2(t)およびCL2(t+ t)はそれぞれ時刻t, 時刻t+ tにおける 層上端のCO2

よって雪粒子が下方へ移動しても計算をする格子点 の位置は変わらず,したがって積雪内部の空気は静 止していると仮定している.実際の積雪では密度と 共に気相率も変化しているため,圧密によって積雪 内部の空気が押し出されるという効果も加わるが, 本モデルでは考慮していない.

2) 土壌におけるCO2の発生量

土壌からのCO2発生量は,積雪期間を通じて一定 と見なし,積雪層内のCO2濃度勾配より推定した. 以下にその根拠を述べる.

土壌中のCO2の発生は主として好気性微生物の代 謝によって生じ,0-40 の範囲では地温の指数関 数で近似される(Yamagishiら,1980).このため, 積雪層から大気に出て行く平均的なCO2フラックス も地温との相関が高い(Marikoら,2000).

一方,筆者らが観測を行った新潟県は,ほぼ定常 的に底面融雪が生じている暖地積雪地帯なので,地 表面の温度はほぼ0 に固定されていると考えて良 い.また,図41に示すように積雪期間を通じての地 温の変化は-5 cmでも0.5 程度である.さらに, 土壌水分も微生物の活性に影響を及ぼすが,観測圃 場は透水性の低い重粘土なので,積雪期間中はほぼ 一定の状態で推移していた(図42C).

また,土壌呼吸は微生物による有機物分解反応で あり,究極的には酸素濃度に律速される.酸素消費 速度roは酸素濃度Oの関数として次式のように記述 される(中野,1991).

$$r_0 = k \frac{0}{K+0} \tag{45}$$

図 41 積雪深と地温の経時変化(1994年)

図 42 積算 CO2**フラックス (A)**, CO2**フラックス (B)**, 深さ10cmにおける土壌含水率 (C)および 積雪深 (D)の推移 (2001年)

Aにおける「実測フラックス」はBを積算したもの.ただし, B図では20分毎の測定値を3時間移動平均したものをプロッ トしている

ここで:酸素濃度が十分に高いときの最大反応 速度,K:飽和定数である.第 章で見たように,1 m程度の積雪があると積雪層底部のCO2濃度は大気 中の2~3倍程度に上昇するが,それでもまだ0.1% のオーダーである.O2とCO2との呼吸商は1なので 積雪層底部における酸素濃度もまた0.1%程度減少す るが,その存在量(20数%)に対しては十分小さい 量である.

以上のように積雪下の土壌では温度・水分・酸素 濃度のいずれの変化も小さく,CO2発生速度を変化 させる要因がない.ただし,これは暖地における粘 土質圃場における条件なので,すべての積雪地帯で あてはまる訳ではない点は注意が必要である.特に 土壌水分については透水性の良い場所や積雪期間中 に融雪が少ない地域などでは,相当に変化するもの と思われる.

さて、 層下端(積雪層底部)のCO2濃度CL1は積 雪の増減や融雪に伴って大きく変動しているが、融 雪が生じておらず、無風状態で、かつ積雪深の増減 速度が充分に小さい場合には、CO2濃度の変動は擬 定常と見なされ、CL1は

$$C_{L1} = rL_1 \frac{L_2 - L_1}{D_{2M}} + C_A$$
 (46)

となる.ここで,(L2-L1)D2mは積雪全層にわた って積分した拡散抵抗である.

rが変化しない,つまりrL1が定数であると仮定す ると,式(46)は独立変数が(L2-L1)D2M,従属変 数がCL1の一次関数となる.

ここで,式(46)はVおよびD2Tが0の場合の解 であるが,式(35),(36)からわかるようにVが0 ではない場合,あるいはD2Tが0ではない場合は, いずれもCL1は式(46)で得られる値よりも小さく なる.すなわち,式(46)で計算されるCL1は, (L2-L1)/D2Mで与えられた積雪条件下におけるCL1 の最大値であると考えられる.

図43に,積雪期間を通じたCL1の実測値と(L2-L1)

各点は30分毎の測定値.図中に引いた破線は各抵抗値における CO2濃度の最大値を結んだもの. /D2Mとの関係を示す.CL1は(L2-L1)D2Mの値に対して一意には決まらないが,その分布は(L2-L1)/D2Mの一次式として与えられる直線(図中の破線)を上限としていることがわかる.このことから, rL1を定数とした上記の仮定は妥当であると判断した.そこで,この直線に式(46)があてはまるとして、直線の傾きよりrL1を求め,L1を0.3mとしてrを計算した.各年について推定されたrL1およびrの値を表8に示す.

2001年に渦相関法で測定した大気中CO2フラック スと、上述の方法で推定したフラックスとの比較を 図42Aに示す.渦相関法によって測定されたフラッ クスは降水等によって大きく乱れているが、積算曲 線の傾きは推定フラックスとよく一致している事が わかる.なお、通算日54日(2/23)以降に渦相関法 によるフラックスが頭打ちとなっているのは、融雪 後に植生が光合成を開始したためだと思われる.

なお,積雪下の土壌呼吸の既往の測定例では,長 野県の森林での測定値(0.026-0.049gCO2・m⁻²・h⁻¹; Maikoら,2000),米国ワイオミング州の森林での測 定値(0.03-0.04gCO2・m⁻²・h⁻¹; Sommerfeldら³⁶³)な どがある.これらと比較すると,1991年と1994年の ムギ圃場はほぼ同じ,1999年の裸地は高く,2001年 の水田はやや低めの値である.水田の値が小さいの は,当試験場の水田土壌が通気性の悪い重粘土であ り,土壌微生物の呼吸活性が森林土壌に比べて低い ためだと考えられる.

3)数値解法のチェック

数値計算に用いたアルゴリズムの妥当性を確かめ るため,簡単な条件下における解析解との比較をお こなった.式(35)および(36)において風および 融雪水の流下がない場合の定常解は以下である.

層:

$$C_{1} = -\frac{r}{2D_{1}} z^{2} + rL_{1} \left(\frac{L_{1}}{2D_{1}} + \frac{L_{2} - L_{1}}{D_{2M}} \right) + C_{A} \quad (47)$$

表8 推定されたCO2フラックス(rL1)およびCO2 発生強度(r)

	1991	1994	1999	2001
	ムギ圃場	ムギ圃場	裸地	水田
rL1 (gCO2• m ⁻² • h ⁻¹)	0.0342	0.0346	0.0700	0.177
$f(gCO_2 \cdot m^{-3} \cdot h^{-1})$	0.114	0.115	0.233	0.059

$$\mathbf{M} :$$

$$C_{2} = -\frac{rL_{1}}{D_{2M}} z + rL_{1} \frac{L_{2}}{D_{2M}} + C_{A}$$
(48)

同じ条件で求めた定常解と数値解との比較(図 44)を見ると, 層の下部で差が見られる.これは z=0における境界条件(層の下端でフラックス は0)を差分近似する際に生じた誤差であると考え られる.しかし今回の解析に用いる 層下端付近で は,両者は良好な一致を示している.

計算に用いたクランク - ニコルソン法は陰的差分 法であるから,陽的差分法に比べて大きな時間刻み 幅で計算が可能である.しかし,解の安定を保証す る格子比について陽的差分法ほど明確な基準はな い.そこで時間刻み幅を変化させて計算結果の応答 を調べた.

時刻0hまでは融雪水量BD=0,以後は一定値BD=4.5mm/hrを与えた場合のz=L:におけるCO2濃度.凡例の数字は計算に用いた時間刻み幅(分)を表す.

時刻00時00分までは融雪水量が0で,00時01分よ り4.5 mm/hの融雪水が出現した場合について,時 間刻み幅が1分,10分,60分,240分と変化させて 積雪層下端における濃度を計算した(図45).ただ し,融雪水量以外のパラメータは時間によらず一定 である.その結果,時間刻み幅が1分と10分とでは ほとんど差は見られず,60分では融雪が生じてから 6時間程度まで,240分では20時間程度まで応答に遅 れが見られた.これより,今回の解析で採用した時 間刻み幅10分という値は妥当であると思われる.

3.シミュレーションの結果と考察

- 1) 濃度の再現性
- モデルに入力するデータは以下である.
- ・積雪深 (m)
- •積雪重量 (kg•m³)
- ・融雪量(底面流出量)(mm/10min)
- ・風速 (m/s)

10分毎に測定したこれらのデータを元にモデル内 の変数を求め、別途推定したパラメタと共に積雪層 底部のCO2濃度を推定する(図46).積雪層底部CO2 濃度の連続観測を行った4冬期のうち、1991年と 2001年のデータはパラメタの推定に用いたので省 き、1991年と1994年のデータを用いてモデルの検証 を行った.

図47に1991年,図48に1994年の実測値とモデルに よる推測値との比較を示す.1991年については通算 日32~42日でモデルは濃度を過大評価,55~61日で 過小評価している.特に40日に実測値に見られる一

図47 モデルによる推定値と実測値との比較(1991年)

図48 モデルによる推定値と実測値との比較(1994年)

時的な濃度上昇のオーバーエスティメイトが目立 つ.1994年は全体的に濃度上昇のピークを過大評価 している事例が多いが融雪末期の50日以降は全体的 に低めの出力となっている.また,44・45日には 150ppmv程度の過小評価が見られる.

図46に示したように,本モデルではCO2の移動に ついて,以下の3つの機構を考えている.

- 1) 分子拡散(積雪深・積雪重量によって決まる)
- 2) 乱流拡散(風速・積雪深によって決まる)
- 3) 溶解(融雪水量によって決まる)

これらの機構がそれぞれ,積雪層底部のCO2濃度 変化にどのように寄与しているのかを見るために, 1994年のデータセットを用いて一部の機構を省いた モデルを用いて,検討を行った.図49は,風の影響 を考慮しないモデルの出力である.風による乱流拡 散は積雪層内のCO2が大気中に出て行くのを促進す る働きがあるので,この働きがない分,全体的に推 定値は濃度を過大評価している.ただし,図48の説 明で述べた44・45日における推定値の過小評価につ いては,風を考慮しない計算結果の方が実測値とよ

くあっている.風速の測定点と濃度観測点とは50m 程度しか離れておらず、両点での風速に違いがあっ たとは考えられない.したがって,44・45日の積雪 は風による乱流変動を受けにくい(圧力変動が積雪 中に伝わりにくい)構造だったのではないかと思わ れる,図4を見ると,氷点下で大量の降雪があり, また,気温がほぼ氷点下だったために30cm程度の 新雪層が維持されたと推測される.第 章で述べた ように,多孔質中の気体の流動は間隙径の影響を強 く受けるため,細かい新雪の中は伝わりにくいはず である。第 章で導いたDrの推定式は主にザラメ雪 について得られたものなので,より細かな新雪やし まり雪については適用できないのかも知れない.-方,分子拡散は10⁻⁴cmのオーダーまでは間隙サイズ の影響を受けないので(遅沢³⁰⁾),第 章で求めた 推定値が適用でき、結果として風を考慮しないモデ ルの方が実測値に近いという結果になったのだと考 えられる.次に,融雪水による溶解を考慮しない モデルおよび風と溶解のどちらも考慮しないモデル の出力を,図50に示す.どちらも考慮しないモデル (青線)はCO2の移動を分子拡散のみとしたモデル である.分子拡散係数DMの推定には含水率を考慮 していないので(第 章), DMは積雪密度に反比例 し,積雪の全拡散抵抗はDMの逆数に積雪深を乗じ て得られるので、結局積雪深と積雪重量から一意に 決まる値である.したがって,この線と溶解を考慮 していないモデルの出力との差が風による濃度低下 を、さらに溶解を考慮していないモデルの出力と実 測値との差が融雪水による濃度低下を, それぞれ表 わしていることになる.風による濃度低下は500-600ppmv程度の時期もあり,積雪底部のCO2濃度形 成に大きく影響していることがわかる.一方,融雪 水の影響も,積雪期間のほぼ全体を通じて見られ, 35,36日,46日などの融雪初期には300ppmv程度の濃 度低下を生じさせている.

2)積雪層のCO2収支

以上,濃度について考えてきたが,CO2量そのも のの収支についも若干の考察を行う.積雪層内の濃 度勾配がほぼ直線だと仮定すれば,積雪層底部の濃 度の半分に積雪層の間隙体積を乗じて,積雪層内に 貯留されているCO2量が推定できる(図51).積雪 深が大きければ間隙の総量は増えるし,積雪層底部 のCO2濃度も増すので,貯留量のカープはほぼ積雪

図49 モデルによる推定値と実測値との比較(1994年) 細い実線は, Dr=0として計算したもの

図50 モデルによる推定値と実測値との比較(1994年) グレーの線は、v1 = v2 = 0として計算したもの 細い実線は、v1 = v2 = 0、Dr=0として計算したもの

深の推移と似た形となる.濃度の実測値を基にした 推定では1994年の場合,1m²あたり最大約0.3gのCO2 が貯留されていたことになる.一方,風を考慮しな

4寒候期にわたって積雪層内のCO2濃度観測を実施した.そのうち積雪層底部(地上0.01m)におけるCO2濃度の測定が行われた,1991年,1994年,1999年各冬期についてデータを示し,濃度変動の傾向と変動を生じさせている原因について考察した.

測定を行ったムギ圃場および裸地における積雪層 底部のCO2濃度は,おおまかには積雪の増加に伴っ て増減し,そのピークは最深積雪深0.56m~1.14mに 対して700ppmv~1100ppm程度であった.

変動については、

- 1) おおまかに積雪層の消長に対応して生じる増減
- 2) 融雪が起こっているときに生じる短時間の濃 度低下

図 51 推定された CO2の積雪内貯留量(1994年) 単位面積(1m²)あたりの積雪に含まれるCO2量を示す. グレーの線は,Dr=0として計算したもの 細い実線は,v1=v2=0として計算したもの

いモデルと融雪水を考慮しないモデルのプロット は,最大0.07-0.08gCO2*m⁻⁴程度実測よりも大きい 時期がある.これらの量のCO2が風によって大気に 放出されたり,融雪水に溶かされて排出されたりし たことになる.この年の土壌からのCO2フラックス は0.0346gCO2*m⁻²*h⁻¹なので,これらのCO2移動量は, 土壌呼吸の約2時間分に匹敵する量だと推定され る.第 章で示した融雪に伴って低下したCO2濃度 の回復や,第 章で示した図20における風速の増減 に追随したCO2濃度の変化などを見ると,外的条件 の変化によって濃度が変化する場合,その遷移に要 する時間は数時間程度である.このことも,ここで 導いたCO2の貯留量の値が妥当であることを示唆し ている.

言

結

3) 風速が大きい時に生じる濃度低下

の3つが抽出された.これらについて,以下のよ うな仮説を立てた.すなわち;

- については、土壌と大気との間のガス交換に 対する抵抗としての積雪の働きそのものであ り、この働きの程度を決定する要因は、積雪 の分子ガス拡散係数と積雪のマスである。
- 2)については積雪層内を流下する融雪水が,間 隙空気中のCO2を溶解するために生じる現象 である.
- 3)については、風によって引き起こされた積雪 層内の空気の乱れが、積雪層内と空気とのガ ス交換を促進して生じる現象である。

これらの仮定を元に,土壌層と積雪層の2層から なる,拡散方程式に基いた鉛直一次元モデルを提案 した.

1.積雪のCO2分子拡散係数の測定について

積雪の分子拡散係数を測定するための装置を試作 し,各種の検定をおこなった結果,絶対値および再 現性の双方において誤差約5%以内の精度で測定が 可能である事がわかった.すなわち,装置の構造と 測定法について立てた仮定と基礎方程式が妥当であ ったことが確認できた.

実際の積雪の拡散係数については,密度0.1~ 0.55g·cm³の雪において相対拡散係数DRは積雪の気 相率fに比例し,比例係数は0.57という結果を得た. この値は既往の測定例や推定値と比較して妥当だと 思われる.また,この値は土壌における既往の測定 値とほぼ同じかいくぶん小さめの結果であった.代 表的な畑土壌の気相率は0.1~0.4程度の範囲にある ので,積雪のガス拡散係数は土壌の約2倍程度と考 えてよい.すなわち積雪が地面を被覆することによ る大気とのガス交換阻害の程度は,その半分程度の 厚さの土壌による被覆に匹敵する.

2.積雪層内の乱流拡散の推定について

大気中の鉛直CO2フラックスと積雪層内外のCO2 濃度差の観測から積雪層の全拡散係数を求めた.こ の全拡散係数から第 章で求めた分子拡散係数の成 分を除去し,積雪層内における乱流拡散係数Drの全 層平均値を推定した.これを風速および積雪深の推 移と比較して,風速の2次式,積雪深の1次式とし て予測する近似式を作成した.

ここでも、雪質の違いは考慮していない.これは 解析を行った期間のほとんどで積雪密度が0.30~ 0.35g・cm⁻³のの濡れざらめだったので,異なる雪質 との比較が出来なかったためである.

しかし、分子拡散係数の測定と同様に、より精密 な評価を行うためには、雪質を組み込んだ式にする 必要があると思われる.すなわち、風による積雪内 空気の振動は微視的に見ると間隙内における空気の 流動に他ならない.すなわち、管路における Poiseuille則に従い、その流量は間隙サイズの4乗に 比例するはずだからである.

また,積雪の層構造によって,空気の乱れが下層

へ伝わる度合いが異なるという文献もある.この点 も今後の課題である.

3.溶解係数 の検討について

積雪層内CO2移動の基礎式より,融雪水による CO2の溶解の程度を表わす溶解係数 を導出した.

は積雪深に反比例するので,積雪深を乗じてその 影響を除いた 'を導入した.この結果に基づいて 積雪層底部のCO2濃度と融雪水溶存CO2濃度の測定 値から 'を求めた結果,0.1~0.3程度の値であっ た.

'と融雪水pH,流出水量,溶存イオン濃度との 比較を行った結果,流出水量および溶存イオン濃度 との間には有意な相関は認められず,融雪水pHと の間には弱い負の相関が認められた.これらより, 融雪水に溶解したCO2が融雪水のpHを低下させてい る可能性は示唆されたが 'を規定する要因につい ては有意な要因は見出せなかった.

4.積雪下CO2濃度モデルによるシミュレーショ ンについて

積雪の分子ガス拡散係数の推定式,風による乱流 拡散係数の推定式,および,測定で求めた溶解係数 の代表値を用い,土壌・積雪層内CO2移動を再現す るモデルを構築した.モデルは土壌層と積雪層から なる2層の鉛直一次元モデルで,10分間隔で測定し た積雪深・積雪重量・風速・底面流出水量を入力 し,積雪層底部のCO2濃度を予測する.空間刻み幅 は1 cm,時間刻み幅は10分とし,陰的差分の数値 解法であるクランク - ニコルソン法を用いて計算す る.数値解の妥当性を確かめるために定常解との比 較および時間刻み幅の検討を行い,正しいことを確 認した.

また,土壌で発生するCO2の量は,積雪期間の地 温・土壌水分・酸素濃度の変化量が少ない事からほ ぼ一定であるとして,積雪層内CO2濃度勾配の最大 値から推定した.大気中で測定されたCO2フラック スと比較すると,積算値の傾きがほぼ同じであり, 妥当だと思われる.

1991年と1994年のデータを用いてシミュレーションを行った結果,両年とも濃度を過大・過小評価している時期は見られるが,全体としては実測値の濃度変化を良く表わしていることが確認された.

分子拡散のみを考えたモデルとの比較では,風の 影響による積雪層底部のCO2濃度の低下の度合いが 融雪水への溶解によるものに比べてやや大きかっ た.また,風や融雪水によって積雪層外へ運ばれる CO2量は,1994年の場合は1m²あたり最大で0.7~ 0.8gCO2程度であった.

5.今後の課題

本研究の中では,積雪の「質」を特徴づける量と しては積雪密度(あるいは気相率)しか考慮してい ない.これは測器の制約などによるものであるが, 筆者が本研究を開始した1991年以来,北陸地方が暖 冬少雪傾向であったことも,その一因である.研究 期間中,積雪期間の大部分にわたって濡れ変態が卓

4寒候期にわたって積雪層底部におけるCO2濃度 の連続測定を行うとともに,積雪層内をCO2が移動 する各プロセス毎に実験・検討を行い定量化した.

積雪の分子ガス拡散係数は,土壌と大気との間の ガス交換に対する抵抗としての働きを評価する基本 的なパラメタである.これを測定するために,非定 常拡散理論に基づく分子ガス拡散係数測定装置を開 発した.まず絶対値精度および境界条件の確からし さに対する検定を行った後,新雪・しまり雪・ザラ メ雪の3種の自然積雪について測定を行い,相対拡 散係数DRを積雪気相率の一次式とする実験式を得 た.

積雪表面上を吹く風によって積雪層内の空気が乱 され,積雪内と大気との間のガス交換が促進される. この効果を見積もるために,渦相関法によって観測 した大気中のCO2フラックスと積雪層内のCO2濃度 勾配より,積雪内の乱流ガス拡散係数を得た.さら にこれを風速および積雪深の関数として求める推定

- Albert, M. R.(1993)Some numerical experiments on firm ventilation with heat transfer. Annals of Glaciology, 18, 161-165.
- 2 . Albert, M. R. and Hardy, J. P.(1995) Ventilation experiments in a seasonal snow cover,

越し,表層のわずかな新雪以外は全層ザラメという 状態が多々見られた.前節において,本研究の結果 は暖地積雪に特徴的なものだと書いたが,これはす なわち,本研究で作ったモデルをたとえば北海道な どでそのまま適用するのは危険だということでもあ る.したがって,モデルの普遍性を担保するために は,別の地域でも追試を行って比較していく必要が ある.

また,融雪水によるCO2の溶解係数 については, けっきょく経験値的な結果しか得られず,機構的な 解析ができなかった.この点については自然積雪に ついての測定のみではなく,室内での精密な実験が 必要だと思われる.

要

摘

式を作成した.

積雪表面で生じた融雪水が積雪内を流下する際, 積雪間隙中のCO2が溶解されるため,融雪期には積 雪層内のCO2濃度は低下する.この溶解の効率を表 わす指標として,輸送理論から導かれる溶解係数 を導入した.積雪層底部CO2濃度および融雪水中の 溶存CO2量の測定値より の平均的な値を求めた.

以上のように検討した各プロセスを統合して,積 雪内のCO2濃度を再現する数値モデルを構築した. モデルは土層と積雪層から成る2層の一次元モデル で,積雪深・積雪重量・融雪量・風速,および別途 見積もったCO2発生強度(土壌呼吸活性)を入力し, 積雪内の任意の深さのCO2濃度,あるいは移動量を 出力する.先に述べた4寒候期の連続観測のデータ と比較した結果,良好な一致が見られた.本モデル および各プロセスの検討結果は,CO2にとどまらず, 積雪と大気との各種物質交換に広く応用しうるもの だと思われる.

用文献

引

Biogeochemistry on seasonal snow-covered catchments (Proceedings of a Boulder symposium, july 1995). IAHS Publ., no.228, 41-49.

3. Albert, M. R.(1996) Modeling heat, mass, and

species transport in polar firn. Annals of Glaciology, 23, 138-143.

- 4 . Burges, A. and Fenton, E.(1953) The effect of carbon dioxide on the growth of certain soil fungi. Trans. Brit. mycol. Soc., 36, 104-108.
- 5 . Carllendar, G. S.(1958) On the amount of carbon dioxide in the atmosphere. Tellus, 10, 243-248.
- 6 . Clark, G. K. C. and Waddington, E. D.(1991) A three-dimensional theory of wind pumping. Journal of Glaciology, 37, 125, 89-96.
- 7 . Colbeck, S. C.(1989) Air movement in snow due to windpumping. Journal of Glaciology, 35, 120, 209-213.
- 8 . Colbeck, S. C.(1997) Model of wind pumping for layered snow. Journal of Glaciology, 43, 143, 60-65.
- 9. Currie, J.A. (1960) Gaseous diffusion in porous media. Part 1.A non-steady method. Br. J. Appl. Phys., 11, 314-317
- 10. Durbin, R. D.(1959) Factors affecting the vertical distribution of Rhizoctonia solani with special reference to CO₂ concentration. Am. J. Bot, 46, 22-25.
- 12. Farrell, D. A., Greacen, E. L. and Gurr, C.G. (1965) Vapor transfer in soil due to air turbulence. Soil science, 102, 305-313.
- 13.藤野和夫(1971)積雪内部での融雪水の流下速 度の測定 .低温科学,物理編, 29, 151-158.
- 14. Fukuda, H.(1955) Air and vapor movement in soil due to wind gustiness. Soil Science, 79, 249-258.
- 15. 平野高司(2001) 5.6 土壌呼吸量. 岩田徹他,第 5章微量気体のフラックス,気象研究ノート, 199. 132-136.
- 16. IPCC (Intergovernmental Panel on Climate Change (1996) Climate change 1995. Cambridge University Press, Cambridge.
- 17.石田 完・清水 弘(1956)積雪の通気抵抗 .ポータブル メーター.低温科学,物理編, 15,63-71
- 18. keeling, C. D. et al. (1989) A three-dimensional model of atomospheric CO₂ transport based on

obserbed winds: 1. Analysis of observed data. AGU Monograpf 55, Washington, American Geophysical Union, 165-236.

- 19.小林俊一(1969)雪面に働く風の力の測定.低 温科学,物理編,27,87-97.
- 20.小南靖弘,高見晋一(1996)積雪のCO2拡散係 数測定装置の開発.雪氷,58,107-106.
- 21.小南靖弘,高見晋一,横山宏太郎,井上聡(1998) 季節的積雪地帯における積雪下のCO2濃度.雪 氷,60,357-366.
- 22.小南靖弘,横山宏太郎,川方俊和(2003)融雪 水による積雪層内CO2の溶解に及ぼすイオン濃 度の影響について.第19回寒地技術シンポジウ ム講演論文集,305-309.
- 23.小南靖弘,横山宏太郎,川方俊和(2004)積雪 内のCO2濃度に及ぼす風の影響.雪氷,66,353-363
- 24. Kominami, Y. and Takami, S. (2004) A novel chamber method for the soil CO2 flux measurement based on the diffusion equation. 水 文・水資源学会誌, 17, 295-303.
- 25. Maeno, N., Narita, H. and Araoka, K.(1978) Icecoring Project at Mizuho Station, East Antarctica, 1970-1975. Measurements of permeability and elastic modulusof snow and firn drilled at Mizuho Station, East Ant-arctica. Memoirs of National Institute of Polar Research, Special Issure No,10, 62-76
- 26.中澤高清(1993)大気中の炭酸ガス (濃度増 加と人間活動).気象研究ノート,181,67-89.
- 27 . Oechel, W. C., Vourlitis, G. and Gastings, S. J. (1997) Cold season CO₂ emission from arctic soils. Global Biogeochemical Cycles, 11, 163-172.
- 28.及川武久(1993)大気中の炭酸ガス (生物圏 の変遷)、気象研究ノート, 181, 91-109.
- 29.大沼匡之(1969)積雪下の作物に対する微気 象.日本積雪連合資料, No.95, 561-568.
- 30.遅沢省子(1987)土壌ガス拡散係数測定と土壌 診断.土壌の物理性,55,53-60
- 31. Oura, H., Oshida, T., Kobayashi, D., Kobayashi, S. and Yamada, T.(1967) Studies on blowing snow .Physics of snow and ice (Conference on physics of snow and ice proceedings) Vol.1,

Part2, Inst. Low Temp. Sci. Sapporo, 1099-1117.

- 32 . Schwander, J., Stauffer, B. and Sigg, A.(1988) Air mixing in firn and age of the air pore closeoff. Annals of Glaciology, 10, 141-145.
- 33. Sokratov, S. A. and A. Sato (2000) Wind propagation to snow observed in laboratory. Annals of Glaciology, 31, 422-433
- 34 . Sokratov, S. A. and Sato, A.(2001) The effect of wind on the snow cover. Annals of Glaciology, 32, 116-120.
- 35. Solomon, D.K. and Cerling, T. E. (1987) The annual carbon dioxide cycle in a mountain soil :Obser-vations, modeling, and implications for weathering. Water Resour. Res., 23, 2257-2265
- 36 . Sommerfeld, R.A., Moisier A. R. and Musselman, R. C.(1993) CO₂, CH₄, N₂O flux through a Wyoming snowpack and implication for global budgets. Nature, 361, 140-142
- 37.高松進, 一谷多喜郎(1987A)水田転換畑およ び畑地で栽培されたムギ類からの主要な褐色雪 腐菌の検出.日植病報, 53, 56-59.
- 38.高松進, 一谷多喜郎(1987) ムギ類褐色雪腐病 に関する研究(3) 水田, 畑および山林土壌か らの病原菌の検出.日植病報, 53, 105-106.
- 39.高見晋一,横山宏太郎,小森友明,関平和(1990)
 積雪下のCO2環境.日本農業気象学会北陸支部
 会誌, 16, 8-11.
- 40.田中正之,中澤高清,青木周司(1987)大気中 の二酸化炭素濃度の精密計測法.気象研究ノー ト,160,1-16.

- 41.田崎順郎(1956)作物の耐雪性に関する研究 -特にその融雪水の及ぼす影響について - .新潟 大学教育学部教育科学, 5, 2, 41-70.
- 42. Tumanov, I. I.(1936) The role of the snow coverage in the wintering of crops in Russia.
 Bull. of Appl. Bota. of Genet. and Plant Breed.
 Series III., No. 6, 3.
- 43. 梅林正直(1976)土壤空気.植物栄養土壤肥料 大辞典,養賢堂, 395404
- 44 . Van Bavel, C.H.M.(1951) A soil aeration theory based on diffusion. Soil Sci .,72 , 33-46
- 45.若浜五郎(1968)積雪内への融雪水の浸透.雪 氷, 30, 6, 175-188.
- 46 . Watson, R.T., Rodhe, H., Oeschger, H. and Siegenthaler, U.(1990) 1. Greenhouse Gases and Aerosols. ed. J.T. Houghton, G. J. Jenkins and J.J. Ephraums "Climate Change. The IPCC Scientific Assessment "1-40. Cambridge University Press, New York.
- 47. 吉田順五 (1968) 融雪水の積雪内滲透. 低温科 学, 物理編, 23, 1-6.
- 48. 吉田順五 (1977) 風が誘起する雪内気流. 低温 科学物理編, 35, 47-65.
- 49. Zimov, S. A., Zimova, G. M., Davildov, S.P., Daviodova, A. I., Voropaev, Y. V., Voropaeva, Z. V., Prosiannikov, S. E., Prosiannikova, O. V., Semiletova, I. V. and Semiletov, I.P.(1993) winter biotic activity and production of CO₂ in Siberian soils: a factor in the greenhouse effect. Journal of Geophysical Research, 98, 5017-5023.

Study on CO₂ Concentration Under the Snowpack at a Warm Part of Snowy Region

Yasuhiro Kominami

Summary

The CO₂ concentration in the air on the soil surface boundary under the snow cover was measured over four winter seasons from 1991 - 1994 to analyze its behaviors under natural conditions and to determine the quantitatively processes involved in CO₂ transfer under the snow cover.

We developed an instrument to evaluate the gas diffusion coefficient of the snow layer based on the nonsteady -state gas diffusion theory. To examine the performance of this instrument and to validate the related assumptions, we supplied the indtrument with glass beads and a bundle of glass tubes. The diffusion coefficient thus measured agreed closely with those calculated theoretically from the geometrical features of the glass beads and tubes.

By using the instrument, we determined the CO₂ diffusion coefficient through several forms of snow piles; each different in age and in weather exposure. The forms were classified into 1) newly fallen snow, 2) granular snow and 3) compacted snow. The deposit had a wide range of snow forms. The diffusion coefficients obtained were proportional to the porosity of the snow.

To determine another component of the coefficient induced by outdoor wind turbulence (hereafter, the turbulent coefficient) we measured the CO₂ flux above the snow cover and the CO₂ concentration difference between the atmosphere and the air at the bottom of snow cover. The turbulent coefficient thus obtained was well expressed as a function of wind speed and snow depth.

A factor was introduced to determine the process of CO₂ dissipation from the snow pile by CO₂ dissolution in melted water. The factor was obtained from the measurement of soluble CO₂ concentration in melted water and the CO₂ concentration of the air at the bottom of snow cover.

These processes were incorporated into a mathematical model to simulate the CO₂ exchange between soil, snow and atmosphere. The model used atmospheric CO₂ concentration, snow depth, snow load, the flow rate of melted water, wind speed and the source intensity of CO₂ emission from underlying soil as inputs. The simulated results were well agreed with those observed in the CO₂ concentration under the snow cover.

^{*}Hokuriku Reserch Center, National Agricultural Research Center,