ダイズ種子デバイドリングループのタンパク質の種子内蓄積と乳酸脱水素酵素に対する凍結変性保護活性および品種間分子量分布

<table>
<thead>
<tr>
<th>著者</th>
<th>門間 美千子・金子 成延・松倉 潮</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>食品総合研究所研究報告</td>
</tr>
<tr>
<td>巻</td>
<td>□</td>
</tr>
<tr>
<td>ページ</td>
<td>□</td>
</tr>
<tr>
<td>発行年</td>
<td>□</td>
</tr>
<tr>
<td>DOI</td>
<td>doi: 10.24514/00002650</td>
</tr>
</tbody>
</table>
Characterization of soybean dehydrin (group2 LEA protein); Localization and accumulation in seed, cryoprotective activity on lactate dehydrogenase, and molecular weight diversity among Japanese soy varieties.

Michiko MOMMA, Shigenobu KANEKO* and Ushio MATSUKURA*
National Food Research Institute
*Current affiliation is National Institute of Crop Science

Abstract
In order to characterize and evaluate the function of soybean dehydrin, we have investigated its accumulation profile in the seeds, cryoprotective activity to lactate dehydrogenase, and molecular weight diversity among soybean varieties. From the results of immunoblotting and direct membrane blotting of seeds, soybean 26kDa dehydrin (Group2 LEA protein) was found to accumulate in cotyledons and hypocotyls homogeneously during late stage of seed maturation. Soybean dehydrin showed cryoprotective activity to lactate dehydrogenase in the similar level as bovine serum albumin and ovalbumin. Its CP50 value was estimated to be 0.2 µM (5.2 µg/ml). Molecular weight diversity of seed dehydrins among 50 Japanese soybean varieties/lines and 12 lines of Glycine soya was examined by immunoblotting and SDS-PAGE. These soybean varieties/lines were separated into two groups by their molecular weight of dehydrins, 26kDa or 27kDa though relationship between the distribution and soybean quality, such as physiological character was unclear. Two lines of Glycine soya contained intermediate polypeptide between 26kDa and 27kDa.

(Received Nov.5,2001; Accepted Dec. 27, 2001)
この26kDaポリペプチドがデハイドリンと呼ばれるLEA(Late Embryogenesis Abundant)タンパク質の一つであることを明らかにした。LEAタンパク質は登熟後期の種子および乾燥およびストレス下の組織で蓄積される熱可溶性タンパク質であり、一般に植物ホルモンのアシジン酸で誘導され、細胞の脱水耐性に関与すると考えられている。LEAタンパク質は一次構造上の特徴からいくつかのグループに分けられる。デハイドリンはそのうちのグループ2に分類され、リリニックモチーフ、セリントラクトン末端近くのモチーフ構造をいくつかの特徴的な一次構造もっている。

本研究ではダイズデハイドリンの特性と機能を検討するために、精製ダイズデハイドリンに対するポリクローナル抗体を用いて、ダイズ種子のダイズ種子内での分布、登熟期の蓄積、摘種間分子量分布ならびに、LEAタンパク質の機能の指標とされる、酵素の凝集変性に対する保護作用について検討した。

実験方法

1. イムノプロッティング

種子各部位の分析には、ダイズ種子（品種：エンレイ）を、種皮、胚軸、胚乳の各部位に分け、メノウ乳製で粉碎した粉末試料を用いた。試料40mgに抽出緩衝液（0.2M 酢酸ナトリウム pH5.2）を加え、ボルテックスで混ぜ、氷上に10分間静置した。これを12,000rpmで10分間遠心分離し、上澄み液を等量の試料調製液（4%SDS、20%グリセロール、10%2-メチルアミノエタノール、0.02%プロモフェノールブルー、0.125M トリス塩酸緩衝液 pH6.8）と混合し、95℃で10分間加熱して泳動試料とした。

登熟種子試料としては、ガラス室で栽培したダイズ（品種：エンレイ）の開花期に花に花をつけて、登熟期（開花後25日）、中期（開花後32日）、後期（開花後50日）および完熟期（開花後60日以降）に採取したものを使った。種子胚乳を液体窒素で粉末し-80℃で保存したものから上記と同様に電気泳動試料を調製した。

国産ダイズ及びツルマメのデハイドリン分子量分布の分析には、兵庫県立北部農業技術センターならびに農林水産省（現：独立行政法人）農業生物資源研究所より供与されたダイズ（Glycine max）及びツルマメ（Glycine soja）の種子を用いた。種子を実験用小型リソマ（Sicer Type 1）で粉碎し、60メッシュの篩を通してものを試料粉末とし、上記と同様にSDS-PAGE試料を調製した。このうち、4品種（エンレイ、納豆小粒、丹波黒、皮青大豆）についてイムノプロッティングを行い、その他の試料についてSDS-PAGEの泳動パターンからデハイドリンの分子量を推定した。

上記方法で調製した試料溶液10～20μLを5-20%ポリアクリルアミドゲル（PAGE, 520L, アトート）に添加し、20mAで60分間電気泳動した。泳動後、ゲルをプロッティング緩衝液（25mM トリス塩酸緩衝液 pH9.5, 40mM ε-アミノカプロ酸、20%メタノール、0.05%SDS）で20分間振とうした後、ヒラノラの方法に従って、セミドライプロッティング装置（Sartoblot II-S、ザルトリウス社）を用い、PVDFメンプレン（Immun-Blot PVDF membrane、バイオラッド）に2.5mA/cm²で30分間プロッティングした。このPVDFメンプレンを、3%牛血清アルブミン（BSA）を含む10mM TBS（トリス塩酸緩衝液 pH7.5, 500mM NaCl）中で4℃、1時間プロッティング処理し、一次抗体（1/2000v/v）ウサギ抗26kDaデハイドリン血清/1%BSAを含むTBS）中で60分間振とうした後、TBS-t（0.05% tween20を含むTBS）で20分間洗浄した。

これを、二次抗体（1/2000v/v）パーオキシダーゼ結合抗ウサギヤギ抗体/1%BSAを含むTBS）で1時間処理し、さらに、TBS-tで3回、TBSで1回洗浄し、パーオキシダーゼ発色キット（イムノスティンHRP1000、コニカ）を用いて検出した。

2. 種子のメンプレーンプロッティング

ダイズ種子（品種：納豆小粒）を図2 Bに示すように、それぞれの方向からカミソリで切断し、その断面にPBS（9.57mM トリス塩酸緩衝液 pH7.5, 8g/l塩化ナトリウム、200mg/l塩化カリウム）で湿らせたニトロセルロース膜（NitroPlus2000 フナコシ）を1分間密着し、切断面のタンパク質をメンプレンに吸着させた。このメンプレンを、プロッティング液（SuperBlock、Pierce社）中で90分間振とうした。次に、一次抗体（1/2000v/v）ウサギ抗26kDaデハイドリン血清/1%BSAを含むPBS）と60分反応させ、TBS-t（0.05% tween20を含むTBS）で20分間、3回洗浄し、二次抗体（1/2000v/v）パーオキシダーゼ結合抗ウサギヤギ抗体/1%BSAを含むPBS）で1時間処理した。これをPBS-tで3回、PBSで1回洗浄し、上記発色キットで検出した。一次抗体の代わりに正規ウサギ血清を用いたものを対照とした。

1. 乳酸脱水素酵素酵素の凍結融解による失活に対する保護活性

乳酸脱水素酵素酵素の凍結融解による失活に対する保護活性をLinらの方法に従って測定した。試料タンパク質（ダイズデハイドリン，牛血清アルブミン（BSA），卵白
実験結果および考察

1. デハイドリンの種子内分布

ダイズ種子果皮、胚軸、子葉の各部分のイムノプロッティングを行ったところ、図1Aに示すように、種子の大部分を占める子葉、および発芽後の根や茎となる胚軸部分にデハイドリンの存在が確認され、種皮では検出されなかった。

種子断面からニトロセルロースメンブレンにタンパク質を吸着させ、イムノプロッティングと同様に抗体と反応させた（図1B）。図aとbは子葉の2方向からの断面であるが、子葉断面では均一な反応が見られた。また、図c右側の胚軸の断面でもデハイドリン抗体に対する反応が確認された。（図cの左側の反応は子葉表面の一部が切断して断面が露出したものである。）

Marttilaらは、オオムギのグループ3 LEAタンパク質であるHVA1の局在性を解析した研究において、HVA1が胚乳、胚、アリューローユソウ等生きた組織全体に存在すると報告している10。単子葉植物であるオオムギと双子葉植物のダイズでは種子の構造が異なり、また、デハイドリンはLEAタンパク質のグループ2に属し、HVA1とは特徴となるモチーフ構造等が異なっているが、HVA1と同様に、発芽後に成長部位となり、また光合成を行う組織（子葉、胚軸）全体に広く分布していた。

オオムギのHVA1は種子の表面近く、特にアリューローユソウ層に多く分布することが10、ダイズデハイドリンについてもメンブレンプロッティングの結果で見える限りでは組織切片中の分布は均質であった。図1B a-cにみられる種皮部分の発色は、対照でも同程度に発色していることやイムノプロッティングの結果からタンパク質以外の非特異的な反応と考えられる。

図1Aにおいて、胚軸及び子葉で、26kDaより高分子側（約30kDa）に、薄いバンドが検出された。Robersonらは、エンドウの種子子葉で、トウモロコシデハイドリンに対する抗体に反応することが、デハイドリンモチーフ構造の一つを模した合成ペプチドに対する抗体には反応しない、主要27kDaよりやや分子
量の高い29kDaポリペプチドを検出している。これにはエンドウ豆とダイズの両方のMoietiesが構成し、40kDaポリペプチドも種子中に見いただされている。アスピリン酸によって誘導されるダイズの耐熱性のEA様タンパク質に影響することから、主要なエイドリンに類似した構造をもつ複数のエイドリン様タンパク質がダイズ種子内で蓄積すると推定される。

2. エイドリンの種子発芽における蓄積時期

発芽前期（開花後25日）、中期（開花後32日）、後期（開花後50日）及び完熟種子様のタンパク質を検出した結果、ダイズ種子は発芽段階のいずれの種子においても検出されず、完熟種子のみで蓄積が見られた（図2）。LEA効果性質は、その名前にあるように、一般に発芽後期に蓄積されるのが特徴である。この実験に用いたエ

図2. 発芽期ダイズ種子におけるエイドリンの蓄積
A. 発芽期種子SDS-PAGEシリンダム電気泳動パターン（CBB染色）
B. 発芽期種子イムノプロットティング
レーン1および6、発芽初期（開花後25日）；2および7、発芽中期（開花後32日）；レーン3および8、発芽後期（開花後50日）；レーン4および9、完熟種子；レーン5および9、精製エイドリン

3. 乳酸脱水素酵素の脱水素作用による失活に対する保護機能

Linhらは、in vitro転写増幅したアラブナメシスCOX15を用い乳酸脱水素酵素の脱水素作用による失活に対する保護機能を調べ、LEA関連タンパク質の中で最初に具体的な機能を示した。同様の活性は、クロレラのグローブレアEAタンパク質であるHIC6や、椎野株ウヘタモンバク質ATC2等で認められ、低栄養条件下で誘導されるタンパク質の機能の指標とされている。図3にLinhらの方法に従ってダイズエイドリンの乳酸脱水素酵素の脱水素作用による失活に対する保護活性を検討した結果を示した。ダイズエイドリンはBSAと同レベルの保護活性を示し、乳酸脱水素酵素の脱水素作用後の残存活性を50%にまで高めることに必要な濃度（CP50値）は0.2μM(5.2μg/ml)であった。Kodaらが単離精製したエソ
細菌の凍結保護タンパク質INO12686はBSAの約一万倍の活性を示すと報告されている1）。植物のLEAタンパク質の保護活性は様々であるが、BSAやラクトアルブミンと同程度ものが多い。

ストレス条件下の組織でLEAタンパク質が原形質膜や小胞体に局在する報告があり12）、親水性の高いLEAタンパク質が膜タンパク質の保護や核内を親水条件に保つ作用をもつと考えられている。ダイズデハイドリンは親水性アミノ酸含量が多く、また、分子中央部分にグリシンに富んだ親水領域があり、乾燥や低温条件下での膜組織やタンパク質の保護に作用していると推定される。今後、その親水性での局在性やストレス耐性にたいする分子内のモチーフ構造の効果を検討することにより、その生理的機能が明らかになるであろう。

4. 国産ダイズおよびツルマメにおけるデハイドリンの分子量分布

前報で報告したダイズ11品種の種子ホエー画分タンパク質の電気泳動パターンでは26kDaのデハイドリンのバンドを欠失したもののが3品種あった1）。このうちの丹波黒、皮青大豆を含む4品種について、26kDaデハイドリン抗体を用いてイムノブロッティングを行った（図4）。その結果、丹波黒と皮青大豆では27kDaのバンドが交差反応を示し、デハイドリンと免疫学的に同定性のあるタンパク質であることが明らかとなった。この27kDaポリペプチドはアミノ酸配列等からデハイドリンであることが確認された（末発表データ）。次に、種子ホエー画分タンパク質の電気泳動パターンから国産大豆50品種についてデハイドリン分子量の品種間分布を調査した。その結果、国産大豆は含有するデハイドリンの分子量によって26kDaタイプと27kDaタイプの2種類に分けられた（表1）。育成品種の黄大豆では、27kDaデハイドリンを含有するものはなくすべて26kDaタイプであった。青大豆20種のうち半数の10種が27kDaデハイドリンを含有していた。また種皮にアントシアニンを含む赤大豆や黒大豆では、丹波黒のみが27kDaタイプであった。種皮色が黄色の丹波黒突然変異体も27kDaタイプであった。ダイズの起源種であるツルマメ（Glycine soja）については、農業生物資源研究所に収集されていた12種のうち7種が27kDaタイプであり、2種で26kDaと27kDaの中間の位置にバンドが見出された。
図4. ダイズ種子デハイドリンの品種による分子量の違い
A SDSポリアクリルアミド電気泳動パターン(CBB染色)
B イムノプロッティング
レーン1および6, 精製デハイドリン; 2および7, 納豆小粒; レーン3および8,
エンレイ; レーン4および9, 丹波黒; レーン5および10, 皮青大豆

表1 ダイズ及びツルマメにおけるデハイドリン分子量の分布

<table>
<thead>
<tr>
<th>試料大豆／ツルマメ</th>
<th>デハイドリン分子量</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26kDa</td>
</tr>
<tr>
<td>黄大豆（育成品種）</td>
<td></td>
</tr>
<tr>
<td>エンレイ</td>
<td>オオツル,</td>
</tr>
<tr>
<td>タマホマレ</td>
<td>兵球1号,</td>
</tr>
<tr>
<td>ミススダイズ</td>
<td>スズユタカ</td>
</tr>
<tr>
<td>コスズ</td>
<td>ポンミノリ</td>
</tr>
<tr>
<td>フクユタカ</td>
<td>農林2号</td>
</tr>
<tr>
<td>黄大豆（在来または在来選抜品種）</td>
<td>和田山白目</td>
</tr>
<tr>
<td>砂糖いらず</td>
<td>毛振</td>
</tr>
<tr>
<td>納豆小粒</td>
<td>ライデン</td>
</tr>
<tr>
<td>白身1号</td>
<td>甘露</td>
</tr>
<tr>
<td>有色大豆（赤または茶色）</td>
<td></td>
</tr>
<tr>
<td>セレベス大豆</td>
<td>夏大豆</td>
</tr>
<tr>
<td>岡山赤</td>
<td>茶かおり</td>
</tr>
<tr>
<td>晩生ダダチャ</td>
<td></td>
</tr>
<tr>
<td>茶豆（岐阜県下呂町）</td>
<td></td>
</tr>
<tr>
<td>赤大豆（岐阜）</td>
<td></td>
</tr>
<tr>
<td>黒大豆</td>
<td>植原早生黒</td>
</tr>
<tr>
<td>青大豆</td>
<td>日高青</td>
</tr>
<tr>
<td>皮青大豆</td>
<td>青大豆乾山</td>
</tr>
<tr>
<td>平塚豆</td>
<td>青ustria</td>
</tr>
<tr>
<td>青平豆</td>
<td>もち大豆低山</td>
</tr>
<tr>
<td>八鹿青</td>
<td>青平豆</td>
</tr>
<tr>
<td>伸展小くかかけ</td>
<td>滋賀木くぐり（晩生・早生）</td>
</tr>
<tr>
<td>タルマメ</td>
<td>マグラ大槇タルマメ</td>
</tr>
<tr>
<td>東北名取市</td>
<td>400020</td>
</tr>
<tr>
<td>東北伊豆沼</td>
<td>90010</td>
</tr>
</tbody>
</table>
デバイドリンは、一般にカロテノイドの代謝過程で生成される植物ホルモンのアシジン酸を構成し、誘導されることが知られている。ダイズ種子成熟期には、ラジオイドのヘンセンやクロロフィルが代謝され、レチジンを主成分とするカロテノイドを生成する。大豆の成長に伴って、大豆のカロテノイド生成が進まないようにしていると考えられる。今回用いた大豆20種において、大豆の半数以上が27kDaタイプであったが、カロテノイドやクロロフィル含有量と、ダイズヘンセン分子量タイプに明らかに相関は見られなかった。前報で26kDaデバイドリンの精製試料とした納豆小粒はダイズの中で最も26kDaデバイドリンの含有が低いものの一つであるが、大豆の種類を無くした小粒である。また、本報でこれらの種子成熟期、粒の大きさ等と27kDaを含む有核物質に共通する特徴的な構造が存在する。以上の通り、ダイズヘンセンは酸性脱栄素系の組織を凍結融解による失活に対して保護作用をもち、種子の乾燥が進む成熟後期に粘性小粒の組織に蓄積されることから、乾燥種子の組織を、乾燥環境に保ち、粒やタンパク質を保護するという機能あるいは機能と推定される。種子に含有するデバイドリンの分子量の違い（26kDaまたは27kDa）によって、種子ダイズは二つのタイプに分けられ、ツルマメでは中間型の分子量のもののが存在した。

要約

登熟種子子葉および完熟種子の子葉、胚軸、種皮の各部位について、デバイドリン抗体を用いてイムノプロッティングを行った結果、デバイドリンは開花後50日までの生長期には検出されず、その後にさらに乾燥が進む時期に集積するものと推定された。完熟種子では、子葉と胚軸で検出され、その組織内の分布は均質であった。また、デバイドリンは、これまでに報告されているいくつかのLEAタンパク質と同様に、牛血清アルブミンや白血球アルブミンをはじめ塩基性の緩衝剤を含む溶出液に対する保護活性をもっており、そのCP50値が0.20μM（5.2μg/ml）であった。

さらに、国産ダイズ50種とツルマメ12種についてデバイドリンの分子量分布を調査した。ダイズはデバイドリンの分子量が26kDaか27kDaであるかによって二つのグループに分けられた。仮生・大粒で知られる丹波黒や、成核や組織構造が不熟種子に近い青大豆の一部が27kDaグループに含まれた。ツルマメでは中間型の分子量のグループがあった。

謝辞

試料に用いたダイズ（Glycine max）及びツルマメ（Glycine soja）の種子を供与いただきました兵庫県立中部農業技術センター曳野玄三博士ならびに千葉大学農学部原田久也博士に深く感謝いたします。

本研究の一部は農林水産省21世紀フロンティアイシノメプロジェクト（プロテオーム）課題として実施された。

文献

2) 今井巧三, 植物のストレス耐性とLEAタンパク質, 化学と生物, 34, 294-303 (1996)

6) Marttila, S., Tenhola, T., Mikkonen, A., A barley (Hordeum Vulgare L.) LEA3 protein, HVA1, is abundant in protein storage vacuoles, Plant., 199, 602-611 (1996)

13) Ukaji, N., Kuwabara, C., Takezawa, D., Arakawa, K., Fujikawa, S., Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late embryogenesis abundant proteins, Plant Physiology, 126, 1588-1597 (2001)