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Abstract 1 

In this study, the relationship between moisture diffusivity in convective air-2 

drying and cellular structure through blanching and freezing pretreatment and quality 3 

attributes of dried pumpkin slices were evaluated to obtain necessary information for 4 

designing appropriate drying and pretreatment conditions. The results suggest that the 5 

loosely bound structure of cell walls due to blanching, and pores in the tissue formed by 6 

ice crystals during freezing, increased moisture diffusivity. In addition, the functional 7 

and structural damage of cell membranes by the pretreatments, shown by the electrical 8 

impedance analysis, is likely involved in moisture diffusivity during drying. In 9 

particular, the sample pretreated by both blanching and freezing showed significantly 10 

higher values of moisture diffusivity compared to other samples. With regards to quality 11 

attributes, a decrease in color lightness due to starch gelatinization during blanching 12 

dramatically affected the color characteristics of the dried product. Starch gelatinization 13 

due to blanching and the formation of pores during freezing significantly influenced the 14 

structure of the samples after drying, which affected the rehydration rates and 15 

mechanical properties.  16 
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1. Introduction 31 

 32 

Pumpkin is one of the most important crops cultivated and consumed 33 

throughout the world, it is recognized as a highly nutritious foodstuff due to its high 34 

content of nutrimental and bioactive components including polysaccharides, 35 

carotenoids, vitamins, dietary fiber, minerals, vitamins, and other substances beneficial 36 

to human health (Yang et al. 2007; de Escalada Pla et al. 2007; Jacobo-Valenzuela et al. 37 

2011; Caili et al. 2006). Pumpkins are often distributed as both raw vegetables and 38 

processed products such as frozen, pureed, precooked, or dried materials to increase 39 

their storage stability and usability (Gonçalves et al. 2011; Gliemmo et al. 2009; Provesi 40 

et al. 2011; Sojak and Głowacki 2010; Nawirska et al. 2009). Among these forms of 41 

processing, drying is the most classical method of food preservation for extending shelf-42 

life, creating a lighter weight for transportation, and taking up less space during storage 43 

(Dandamrongrak et al. 2002). Despite the development of newer drying techniques, 44 

most vegetables are still air-dried because this method of dehydration remains the 45 

simplest and most economical (Mazza 1983). However, air-drying has the disadvantages 46 

of a longer drying time during the falling rate period, low energy efficiency (Orikasa et 47 

al. 2018), and subsequent quality deteriorations such as color fading, browning, and loss 48 

of nutrients (Krokida et al. 1998; Liu et al. 2014; Guiné and Barroca 2012; Horuz et al. 49 

2017). Therefore, a large amount of data have been previously reported which estimate 50 

moisture diffusivity and the modeling of moisture content changes during the 51 

convective drying process of fruits and vegetables such as pumpkins (Doymaz 2007; 52 

Molina Filho et al. 2016; Guiné et al. 2012), tomatoes (Hawlader et al. 1991), kiwifruit 53 
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(Orikasa et al. 2008; Simal et al. 2005), and carrots (Liu et al. 2014; Doymaz, 2004) to 54 

optimize drying conditions to improve efficiency. 55 

In these ongoing studies, it has been shown that pretreatments such as 56 

blanching and freezing are effective in improving drying efficiency (Lewicki 1998; 57 

Mazza 1983; Dandamrongrak et al. 2002; Eshtiaghi et al. 1994) and suppressing the 58 

increase in sample temperature and preventing the structural deformation (Tatemoto et 59 

al. 2016; Ando et al. 2019a; Ando et al. 2019b) of fruits and vegetables. Nieto et al. 60 

(1998) investigated the drying characteristics of apples after blanching and suggested 61 

that the degradation of the middle lamella and hemicellulosic polysaccharides also 62 

affects the drying rate of fruits and vegetables. The high drying rates of prefrozen 63 

samples are attributed to the high moisture transfer rates in the tissues due to the 64 

remarkable disorder of the cell wall structure caused by the formation of ice crystals 65 

during freezing (Lewicki 1998; Tatemoto et al. 2016). Furthermore, previous studies 66 

claim that destruction of the cell membrane structure and the modification of membrane 67 

permeability as a result of freezing pretreatment also increases the drying rate 68 

(Vaccarezza et al. 1974; Ando et al. 2016). Therefore, the state of the cell wall and cell 69 

membrane structures should be investigated to clarify the mechanism that causes 70 

changes in drying rates due to pretreatments. It has been reported that the blanching or 71 

freezing-thawing pretreatments are effective in facilitating moisture transport within the 72 

sample tissues of pumpkins during drying (Arévalo-Pinedo and Murr 2007). However, 73 

the relationship between structural changes in cells and the moisture transport 74 

phenomenon has not been clarified. 75 
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In this study, observations of cell wall structures and electrical impedance 76 

analysis to characterize cell membrane states were applied to evaluate the changes in 77 

cellular structures by blanching and freeze-thaw pretreatments in pumpkin slices. These 78 

outcomes were then compared with estimated moisture diffusivity during convective 79 

air-drying. The dried products are sometimes used as an additive for instant soups, 80 

breads and cakes after powdering, but are often used as a cooking ingredient after 81 

rehydration. Therefore, evaluation of rehydration characteristics and quality attributes 82 

after rehydration can be useful for the quality design of the last products. In our study, 83 

internal structures, rehydration characteristics, colors, and mechanical properties of the 84 

samples were evaluated to investigate the influence of the pretreatments on the quality 85 

attributes of the dried products. The results obtained enable a greater understanding of 86 

the drying processes which will be beneficial for designing appropriate drying and 87 

pretreatment conditions.  88 

 89 

2. Materials and methods 90 

 91 

2.1 Sample preparation 92 

Pumpkins (Cucurbita maxima) of the cultivar Kofuki were obtained from a 93 

local market and used for experiments within seven days of purchase. Kofuki is a mealy 94 

type of pumpkin with relatively high starch and sucrose contents (Cumarasamy et al. 95 

2002). The initial moisture contents of the pumpkins were gravimetrically determined to 96 

be 5.377 ± 0.017 on a dry basis (g/g) from an average of eight samples. The flesh of the 97 
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pumpkin was shaped into a discoid shape with a diameter of 20.5 mm and a thickness of 98 

3.5 mm. Four types of samples, fresh (non-treated), blanched, fresh-frozen, and 99 

blanched frozen, were used for drying. For the blanching procedure, the cylindrical 100 

sample was heated in boiling water for 40 s then immediately cooled in iced water. The 101 

sample’s temperature was maintained at 25 °C in an incubator (CN-25C; Mitsubishi 102 

Electric Engineering Ltd., Tokyo, Japan) for 1 h before drying. For the freezing 103 

procedure, the sample was wrapped in plastic film and stored in a freezer (HRF-90XT; 104 

Hoshizaki Corp., Aichi, Japan) at −20 °C for more than 4 h, then thawed in the 105 

incubator at 25 °C for 3 h. 106 

 107 

2.2 Drying procedure and calculation of effective moisture diffusivity 108 

The measured room temperature and relative humidity were approximately 109 

20 °C and 49 % respectively. During convective air-drying, samples were placed in a 110 

drying chamber (DN-42; Yamato Scientific Co., Ltd., Tokyo, Japan) at controlled 111 

temperatures of 40 °C, 60 °C, and 80 °C. The relative humidity in the chamber had been 112 

kept below 20 % through the drying. The air velocity in the chamber was 1.5 ± 0.1 m/s 113 

on average throughout continuous measurements over 3 min. After specified drying 114 

times, the sample was taken out of the chamber and weighed. The moisture content was 115 

calculated from both the initial moisture content and the mass. 116 

 The moisture transport phenomenon during drying is often described by using 117 

Fick’s diffusion equation. An analytical solution in the case of drying a plane sheet of 118 

thin layer assuming one-dimensional moisture transport can be developed as follows 119 

(1) 
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(Crank 1975): 120 

M−Me

M0−Me
=

8
π2�

1
(2n+1)2 exp �−

(2n+1)2Dπ2t
4l2

�
∞

n=0

 , 121 

where M, Me, and M0 denote the moisture content, the equilibrium moisture content 122 

(equilibrium value of the moisture content determined by air temperature and relative 123 

humidity), and the initial moisture content on a dry basis, respectively. D denotes the 124 

effective diffusion coefficient (m2·s−1), l denotes the half thickness of the sample slice 125 

(m), and t denotes the time (s). Constants D and Me were determined by fitting Eq. (1) 126 

to the averaged values of six samples using the least squares method using the software 127 

(MATLAB R2018a, The MathWorks, Inc., Natick, USA). Thirty terms of the series 128 

were used in the calculation which was sufficient for the convergence. The root mean 129 

squared error was calculated as an index of the goodness of fit. 130 

 131 

2.3 Electrical impedance analysis 132 

 The electrical impedance analysis, widely used to estimate the physiological 133 

status of various biological tissues (Zhang and Willison 1992; Zhang et al. 1993; Ando 134 

et al. 2014; Watanabe et al. 2018), was applied to evaluate cell membrane damage in the 135 

samples before and after each pretreatment. The impedance magnitudes |Z| (Ω) and 136 

phase differences θ (rad) of the samples were measured at 81 points (logarithmic 137 

frequency intervals) over a frequency range from 50 Hz to 5 MHz using an impedance 138 

analyzer (IM3570, HIOKI E.E. Corp., Nagano, Japan). The electrodes were penetrated 139 

from a side of the sample disk with a distance of 10 mm between the electrodes. The 140 

electrodes were connected to the impedance analyzer via coaxial cables. The sample 141 
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temperature was maintained in an incubator at 25 °C, and the test was carried out at a 142 

room temperature of 25 °C. The measured impedance data were analyzed using the 143 

equivalent circuit model for cellular tissues, as previously described (Ando et al. 2014; 144 

Ando et al. 2017). The resistance of the extracellular fluid, Re, the resistance of the 145 

intracellular fluid, Ri, and the capacitance of the cell membrane, Cm, were all 146 

individually calculated through this model. Detailed procedures for these analyses are 147 

described in a previous study (Ando et al. 2017). 148 

 149 

2.4 Scanning electron microscopy 150 

Fresh and pretreated samples were studied via scanning electron microscopy 151 

(SEM) to evaluate the cell wall adhesion of tissue samples. The centers of the samples 152 

were cut with a sharp knife into small blocks approximately 3.5 mm wide and 1 mm 153 

thick, before being rapidly frozen in liquid nitrogen and freeze-dried. The cross-154 

sectional surfaces of the freeze-dried blocks were sputter-coated with gold in a sputter 155 

coater (JFC-1500; JEOL Ltd., Tokyo, Japan). These cross-sections were then observed 156 

using an SEM (JSM-5600LV; JEOL Ltd.) at an accelerating voltage of 5 kV under high 157 

vacuum conditions. The internal structures of the samples after drying were also 158 

observed. Small blocks with approximately 2 mm sides were cut with a sharp knife 159 

from the center of the dried samples. The cross-sectional surface was then observed in 160 

the same manner as previously described. 161 

 162 

2.5 Color measurements 163 
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A color-difference meter (CR-300, Minolta Co., Ltd., Tokyo, Japan) was used 164 

to measure the colors of the sample surfaces during drying. After specified drying times, 165 

samples were taken out of the chamber and values of a color lightness (L*), 166 

redness/greenness (a*), and yellowness/blueness (b*) of both sides of the samples were 167 

measured and averaged. As indices of color characteristics, the chroma, C*, and the hue 168 

angle, h, were calculated via the following equations, respectively: 169 

C*=�(a*)2 + (b*)2 , 170 

ℎ = 180 tan−1 �
b*
a*
� /𝜋𝜋 . 171 

 172 

2.6 Rehydration characteristics 173 

Each dried sample was immersed in 200 mL of distilled water in a beaker 174 

placed in a thermostatically controlled water bath at 30 °C. After the specified 175 

rehydration times, the samples were removed from the water and wiped with absorbent 176 

paper to remove residual water from the surface. The samples were then weighed with 177 

an electric scale. The moisture content on a dry basis (g/g) was calculated from both the 178 

initial moisture content and the mass. The exponential equation, including the single 179 

rate constant as shown below, was used to characterize the rehydration behavior of the 180 

samples (Krokida and Marinos-Kouris 2003): 181 

M−Md

Ms−Md
= 1−exp(−krt) , 182 

where Md and Ms denote the moisture content of the dried sample and the saturated 183 

moisture content, respectively. kr denotes the rehydration rate constant (h−1), and t 184 

denotes the time (h). Constants kr and Ms were determined by fitting Eq. (4) to the 185 

(2) 

(3) 

(4) 
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averaged values of experimental data using the least squares method. 186 

 187 

2.7 Mechanical properties of the rehydrated samples 188 

Puncture tests of the rehydrated samples were carried out using a universal 189 

testing machine (5542; Instron, Norwood, MA, USA) equipped with a 500 N load cell. 190 

The dried samples were placed on a metal base with a 10 mm diameter hole in the 191 

center. A cylindrical plunger of 3.2 mm in diameter was then inserted at a speed of 1 192 

mm/s into the center of the flat surface of the sample until it passed through the center 193 

of the hole and completely penetrated the sample. The trigger load was set at 0.05 N. 194 

The thickness of the samples were measured using a caliper. The value of stress was 195 

calculated by dividing the force by the cross-sectional area of the plunger. The strain 196 

was calculated by dividing the displacement by the sample thickness. Fracture stress, σf 197 

(Pa), and initial elastic modulus, E (Pa), were calculated as indices of the mechanical 198 

properties. The value of E was defined as the slope of the first linear section of the 199 

stress-strain curve. The experiments were replicated 12–14 times for each sample. The 200 

test was carried out at a room temperature of 25 °C. 201 

 202 

2.8 Statistical analysis 203 

Statistical analyses were performed using R software version 3.5.1 (R Core 204 

Team). Differences among the means were compared using a Tukey multiple range test 205 

with the analysis of variance at a significance level of p<0.05. 206 

 207 
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3. Results and discussion 208 

 209 

Figure 1 shows changes in moisture content versus drying time for the fresh 210 

samples. As found in previous studies, the moisture content decreased faster at higher 211 

drying temperatures, a trend that was also observed in each pretreated sample. The solid 212 

lines in Fig. 1 represent the least squares regression analysis of the model, shown as Eq. 213 

(1), showing the good agreement with the experimental data. The effective diffusion 214 

coefficient D values determined from the analysis are shown in Table 1. For each 215 

condition, the root mean squared error between the experimental and approximate data 216 

were in the range of 0.026 to 0.051. The D value of the pretreated samples tended to 217 

increase under any temperature during drying, as compared to the fresh samples. In 218 

particular, the values of the blanched-frozen samples showed the highest D values at 219 

1.10–1.11 times higher than those of the fresh samples. The D values of the fresh-frozen 220 

samples were slightly higher than those of blanched samples at 60 °C and 80 °C, 221 

whereas those of the blanched and fresh-frozen samples at 40 °C showed almost the 222 

same values. These results confirm that blanching and freezing pretreatments are 223 

effective for facilitating moisture transfer in pumpkin tissues during convective air-224 

drying, which is in line with a previous study by Arévalo-Pinedo and Murr (2007) 225 

which showed the same effect during the vacuum drying of pumpkins. In addition, the 226 

results show that the blanching-freezing pretreatments are the most effective in 227 

increasing the drying rate. 228 

Figure 2 shows the impedance characteristics on the complex plane (Cole-Cole 229 
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plot) of the fresh and pretreated samples. The impedance characteristics of the fresh 230 

sample displayed a relatively large semicircle with a diameter of 20 kΩ while those of 231 

the pretreated samples appeared markedly shrunk. It has been reported that the 232 

shrinkage of the impedance characteristics of plant tissues occurs during freezing (Wu 233 

et al. 2008; Zhang and Willison 1992) and heating (Zhang et al. 1993; Halder et al. 234 

2011). The phenomenon is thought to be a result of structural damage to the cell 235 

membranes. Therefore, the impedance characteristic results suggest that the cell 236 

membranes in the pretreated pumpkin tissues were damaged during the blanching and 237 

freezing-thawing processes. 238 

The measured impedance data were then analyzed with the modified Hayden 239 

model (Ando et al. 2017). The solid lines in Fig. 2 represent approximations given by 240 

the model fitted by the complex nonlinear least squares method. Note that the straight-241 

line sections of the low-frequency areas were removed because they occurred due to the 242 

polarization phenomenon at the electrode surface (Pliquett 2010; Kalvøy et al. 2011) 243 

and are not related to the cellular structure. The measured impedance and approximate 244 

values show a good agreement for all samples, which confirms that the present model is 245 

acceptable for the application. The estimated values of the parameters in the model are 246 

shown in Table 2. The values of cell membrane capacitance, Cm, was highest in the 247 

fresh samples, while the values in other samples decreased. The high capacitance of 248 

biological tissues is thought to depend on the lipid bilayer structure of the cell 249 

membrane (Ashrafuzzaman and Tuszynski 2012). Therefore, the high Cm value of the 250 

fresh sample potentially occurred as a result of the maintenance of the membrane 251 
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structures. However, the Cm values of the blanched and fresh-frozen samples decreased 252 

to 43 % and 27 %, respectively. A decrease in Cm has been reported in previous studies 253 

on the heating of spinach (Watanabe et al. 2017) and Japanese radish (Ando et al. 2017). 254 

This phenomenon was attributed to the thermal denaturation of phospholipids which 255 

constitute the cell membrane. It has been previously reported that Cm values decreased 256 

to 25 % in apples (Ando et al. 2019b) and 53 % in carrots (Ando et al. 2016) during 257 

freezing treatment at −20 °C. These results are thought to stem from the formation of ice 258 

crystals during the freezing process. The lower Cm values of the fresh-frozen samples 259 

suggest that freezing treatment is destructive to the cell membrane structure. The 260 

blanched-frozen samples that were stressed by both heating and freezing treatments 261 

showed the lowest Cm value (7.5 % of that of the fresh sample), suggesting considerable 262 

damage to the cell membrane structure. 263 

In healthy cells, the low electrolyte concentration of the extra-cellular fluid and 264 

high electrolyte concentration of the intracellular fluid are separated by the 265 

permselectivity of the cell membranes. Therefore, the high values of extra-cellular fluid 266 

resistance, Re, and low values of intra-cellular resistance, Ri, of the fresh samples 267 

indicates that the cell membranes are functioning normally. In the pretreated samples, 268 

the Re values decreased, and the Ri values increased indicating a difference in electrolyte 269 

concentration between the intra- and extra-cellular fluids. This difference occurred as a 270 

result of the cell membranes being unable to function correctly. In a study by Halder et 271 

al. (2011) the impedance of potato tissues during heating sharply declined in the 272 

temperature range of 52–60 °C. This outcome was found to be due to cell membrane 273 
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damage followed by the release of intra-cellular water into the extracellular region. 274 

Therefore, changes in the Re and Ri values of the blanched samples observed in this 275 

study were attributed to this same phenomenon due to heating stress to the cell 276 

membranes. During the freezing process, the interior of the cells is rapidly dehydrated 277 

with ice crystal growth in the extracellular region. This stress causes the alteration of 278 

membrane transport properties (Palta 1990) resulting in fatal disruption of the cell 279 

membrane (Ando et al. 2012). 280 

Changes in the Re and Ri of the fresh-frozen samples can be explained by this 281 

phenomenon. The change ratio of the Re and Ri values of blanched-frozen samples 282 

tended to increase, as with the changes in the Cm values, compared to the blanched or 283 

fresh-frozen samples. These results suggest that the cell membranes were markedly 284 

damaged in the blanched-frozen sample. Figure 3 shows the SEM images of cross-285 

sections of the fresh and pretreated samples. Cells with an approximate 50 µm diameter 286 

in the tissues of fresh samples (Fig. 3-A, a) were densely arranged. The cell walls were 287 

split, and the interiors of the cells containing starch particles of approximately 10 µm in 288 

diameter were exposed. In the fresh samples, the cell walls strongly adhered to each 289 

other, whereas the blanched samples showed a loosely bound structure of the cell walls 290 

(Fig. 3-B, b), likely due to a β-elimination reaction splitting the homogalacturonan 291 

chains that primarily comprise the pectin structure (Sila et al. 2009). In the blanched 292 

sample, the cell walls were divided at the middle lamella when the tissue was cut due to 293 

this reaction. Therefore, the saclike structures of the cell walls were exposed, and the 294 

interiors of the cells were not observed. The tissues of the fresh-frozen samples showed 295 
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sparse structures presumed to have occurred due to ice crystal formation during freezing 296 

(Fig. 3-C, c). Although the structures are largely disrupted in the fresh-frozen samples, 297 

the separations between the cell walls as seen in the blanched samples were not 298 

observed. In the blanched-frozen samples, a sparse structure was observed as with the 299 

fresh-frozen sample, and the cell walls were largely separated compared to the 300 

blanching samples (Fig. 3-D, d). 301 

In terms of the relation of the damages to the cell membrane caused by the 302 

pretreatments and the moisture diffusivity, the samples with a higher change ratio of the 303 

parameters, i.e., with more significant damage to the cell membranes, had higher D 304 

values. This result is consistent with a previous study by Ando et al. (2012) which 305 

claims that structural and functional damage to cell membranes leads to an increase in 306 

water permeability and accelerates moisture transfer in plant tissues. In addition, it was 307 

assumed that damage to the cell walls, i.e., the separation of cell walls attributed to 308 

changes in pectin structures by heating, and physical damage due to the growth of ice 309 

crystals during freezing also contributed to an increase in moisture diffusivity. In 310 

particular, the highest D values of the blanched-frozen samples were attributed to the 311 

marked damage to both cell membranes and cell wall structures, suggesting that 312 

blanching-freezing pretreatment is effective in increasing the drying rate and reducing 313 

the drying time required. 314 

Figure 4 shows the changes in the color parameters, lightness L*, chroma C*, 315 

and Hue angle h during drying at 60 °C. The lower values of L* and C* of the blanched 316 

and blanched-frozen samples before drying compared to other samples is likely due to 317 
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leakage of the gas spaces present in the tissue, as reported in studies on the vacuum 318 

impregnation of pears (Perez-Cabrera et al. 2011) and papayas (Yang et al. 2017). It is 319 

theorized that the internal gas expands and therefore forces its way out of the tissue 320 

during blanching. This occurrence results in the replacement of the gas phase by the 321 

liquid phase, inducing more homogenous refractive indices in the tissues. This event 322 

promotes light absorption against scattering resulting in the tissue samples becoming 323 

transparent with decreasing in lightness and chroma (Chiralt and Talens 2005). 324 

Furthermore, swollen starch particles due to gelatinization during heating may 325 

have also contributed to the optical properties. The values of L* and C* of the fresh-326 

frozen samples were slightly lower than those of the fresh samples due to the 327 

destruction of cellular structures and the inflow of cellular water into the intercellular 328 

spaces during freezing. The L* values of the blanched and blanched-frozen samples 329 

tend to decrease even further from the initial low values. This result may be attributed to 330 

the high amorphous starch fractions of the gelatinized starch maintained during drying 331 

(Xiang et al. 2018) which indicates restrained light scattering and low lightness. The L* 332 

and C* values of the fresh-frozen and blanched-frozen samples tend to decrease more 333 

substantially than those of the fresh and blanched samples during the drying process. 334 

This result may be explained by the oxidization of carotenoids (Song et al. 2017) which 335 

is prone to occur in the frozen-thawed tissues where the cell walls and membranes are 336 

significantly destroyed (Park 1987). The fact that the decrease in the C* value was 337 

almost depended on the decrease in the b* value (decrease in yellowness) supports this 338 

view. The values of the hue angles h of the fresh samples were nearly constant during 339 
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drying. However, the values of other samples decreased, especially for the blanched and 340 

blanched-frozen samples which showed lower values compared to the fresh-frozen 341 

samples. Decreases in hue angles during the air-drying of blanched pumpkins have been 342 

previously reported (Song et al. 2017). This phenomenon is thought to be a result of the 343 

degradation of carotenoid pigments and the formation of brown compounds due to 344 

Maillard reactions during drying. However, in this study subequal decreases in h values 345 

were observed even when drying at low temperatures. This result suggests that the 346 

reaction that occurs in the blanching process forms brown compounds, then they are 347 

concentrated with drying and strongly reflected in the h values of gelatinized dried 348 

tissues with lower scattering and higher transparency. These trends of color change are 349 

similar at other drying temperatures, and they are dependent on moisture content, not 350 

drying time (data not shown). 351 

Figure 5 shows the internal structure of the pumpkin slice samples after drying 352 

at 60 °C. In the fresh samples, structures with densely packed starch particles 353 

approximately 10 µm in diameter are observed (Fig. 5a). Structures of the blanched 354 

samples show a smooth surface (Fig. 5b) as observed in dried starch noodles (Xiang et 355 

al. 2018). This result demonstrates the state in which gelatinized starch particles are 356 

accumulated and densely compressed by the drying shrinkage. In the fresh-frozen 357 

samples, although starch particles were observed as with the fresh samples, pores 358 

formed due to ice crystal formation during freezing were distributed throughout the 359 

inside (Fig. 5c). The blanched-frozen samples also showed a porous structure with many 360 

airspaces (Fig. 5d), though the starch particles were gelatinized entirely. Figure 6 shows 361 
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changes in the moisture content during rehydration at 30 °C for each dried sample. The 362 

moisture content of the blanched-frozen samples reached its saturation at the lowest 363 

time of 1 h, while other samples required more than 3 h. The estimated values of the 364 

rehydration rate constant kr are 0.96, 2.10, 2.25, and 7.38 h−1 for the fresh, blanched, 365 

fresh-frozen, and blanched-frozen samples, respectively. Here, the determination 366 

coefficients for all samples are greater than 0.99, which indicates the model was 367 

appropriate for explaining the rehydration phenomenon. Water can generally be 368 

absorbed more efficiently by amorphous food materials than by crystalline materials 369 

during hydration (Xiang et al. 2018). Therefore, the higher kr values of the blanched and 370 

blanched-frozen samples could be explained by their higher amorphous starch fractions 371 

due to gelatinization during blanching. In addition, the porous internal structures of the 372 

fresh-frozen and blanched-frozen samples means that there is a larger surface area to 373 

absorb water which may also contribute to the high values of kr. These results show that 374 

the blanching and freezing treatments before drying are effective in increasing the 375 

rehydration rate of the dried samples. 376 

Figure 7 shows the representative stress-strain curves by the puncture test of 377 

the fresh and pretreated pumpkin slices before drying and after drying-rehydration. 378 

Before drying, the stress of the fresh sample was significantly higher than that of 379 

pretreated samples, which is considered to be due to the integrity of the cellular 380 

structure. Although the value was decreased in the samples after drying-rehydration, the 381 

stress of the fresh sample was higher than that of other samples as before drying. Table 382 

3 shows the fracture stress, σf, and initial modulus, E, of the samples before drying and 383 
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after drying-rehydration. Before drying, the highest values of σf and E are observed in 384 

fresh samples attributable to the maintained integrity of the cell walls and cell 385 

membrane structures. However, in the blanched samples, the σf value markedly 386 

decreases (94 % decrease) compared to the fresh samples, which is potentially 387 

attributable to the loosely bound structure of the cell walls, as shown in Fig. 3b, due to 388 

the degradation of pectin structures caused by heating (Sila et al. 2009). The σf value of 389 

the fresh-frozen samples also decreased purportedly due to the destruction of the cell 390 

wall structures caused by ice crystal formation during freezing and cell membrane 391 

damage demonstrated by the impedance analysis. However, the σf value of the fresh-392 

frozen samples was slightly retained compared to the blanched samples because the 393 

dissociation of the cell walls by heating did not occur. 394 

Conversely, the fresh-frozen sample showed a marked decrease in the E value 395 

(96 % decrease). The reduction of turgor pressure due to changes in cell membrane 396 

states is a major factor for the mechanical parameters, especially the elasticity of 397 

vegetable tissues (Chassagne-Berces et al. 2009; Ando et al. 2012). Therefore, the low E 398 

value of the fresh-frozen samples can be explained through structural and functional 399 

damage to the cell membranes by freezing treatment, as suggested by the impedance 400 

analysis. The blanched-frozen samples which were subjected to heating and freezing 401 

stresses show markedly decreased values of σf and E. 402 

As for the samples after drying-rehydration, although the fresh sample had the 403 

highest values of σf and E compared to other samples, they were significantly decreased 404 

compared to the fresh sample before drying, likely due to structural destruction during 405 
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drying (Ando et al. 2014), indicating that it is difficult to restore the values by 406 

rehydration. In the blanched samples, the values of σf and E decreased to 33 % and 407 

13 %, respectively, through drying-rehydration treatment for the same reason. The lower 408 

value of E of the fresh-frozen sample than that of the blanched sample indicates that the 409 

formation of pores in tissues due to freezing treatment results in a further reduction in 410 

elasticity of the rehydrated sample. The values of σf and E of the blanched-frozen 411 

sample did not change before or after drying-rehydration, indicating that structural 412 

destruction occurs mostly before drying and no further mechanical change occurs 413 

during the drying-rehydration process. The results reveal that the blanching and freezing 414 

pretreatments were effective in increasing the rehydration rate of the dried materials but 415 

lead to a reduction in the parameters of mechanical properties. 416 

 417 

4. Conclusions 418 

 419 

This study aimed to clarify the relationship between the moisture diffusivity of 420 

pumpkin slices during convective air-drying and changes in the cellular structure due to 421 

blanching and freezing pretreatments, as well as the quality attributes of the dried 422 

products. The loosely bound structure of the cell walls likely due to a β-elimination 423 

reaction splitting the homogalacturonan chains caused by thermal blanching was 424 

observed in blanched sample, whereas the formation of pores presumed to have 425 

occurred due to ice crystal development during freezing was observed in frozen 426 

samples, respectively. In particular, the samples treated with both blanching and 427 
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freezing showed significantly destroyed structures of the cell walls. The electrical 428 

impedance analysis shows a decrease in the cell membrane capacitance and the changes 429 

in the intra- and extra-cellular fluid resistances those reflect the structural and functional 430 

damages to the membranes for the pretreated samples. This trend was remarkable in the 431 

blanched-frozen sample, and that of blanched and fresh-frozen samples was almost the 432 

same level. The estimated value of moisture diffusivity was lowest in fresh samples at 433 

each drying temperature, potentially due to the cell wall and cell membrane structures 434 

maintaining their integrity and restraining water transfer. Among pretreated samples, the 435 

blanched-frozen samples show the highest value of moisture diffusivity at 1.10–1.11 436 

times higher than those of the fresh samples at each drying temperature. This result 437 

suggests the structural and functional damages to the cell walls and cell membranes by 438 

the pretreatments facilitates moisture transfer increasing the drying rate. 439 

Changes in color were found to appear predominantly in the blanched samples, 440 

and the influence of freezing was limited. This change is potentially attributed to an 441 

increase in transparency due to starch gelatinization, and the formation of brown 442 

compounds concentrated with drying. Moreover, starch gelatinization by blanching and 443 

the formation of pores during freezing greatly influenced the structures of the dried 444 

samples, resulting in increases of the rehydration rate. In particular, the rehydration rate 445 

of the blanched-frozen samples showed the highest value, 7.7 times higher compared to 446 

the fresh sample. However, significant reductions in the parameters of the mechanical 447 

properties by the pretreatments were observed in the mechanical test of the sample after 448 

drying-rehydration. These findings may be valuable in predicting drying times and 449 
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quality attributes and designing appropriate drying and pretreatment conditions. The 450 

calculation of total energy spent throughout the process of pretreatment and drying and 451 

the optimization of the process conditions taking into account for the consumer 452 

acceptability of the texture and other quality attributes should be addressed in future 453 

work. 454 
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Figure 1 Changes in the moisture ratio during drying of 
the non-treated pumpkin slices. The data are mean values of 6 replicates. 
The solid lines represent approximations given by Eq. (1).



Figure 2 Representative Cole-Cole plots for the fresh, blanched, fresh-frozen, 
and blanched-frozen pumpkin slice samples. The solid lines represent
approximations given by the modified Hayden model (Ando et al. 2017).
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Figure 3 Scanning electron micrographs of cross sections of the fresh (A, a), 
blanched (B, b), fresh-frozen (C, c) and blanched-frozen (D, d) pumpkin slices 
(A, B, C and D: ×100 images, a, b, c and d: ×500 images).



Figure 4 Changes in the lightness (a), chroma (b) and Hue angle (c) 
of pumpkin slice samples during convective air-drying at 60 °C. The 
data are mean values of 8 replicates. Bars denote standard error.
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Figure 5 Scanning electron micrographs of cross sections of the fresh (a), 
blanched (b), fresh-frozen (c) and blanched-frozen (d) pumpkin slices after 
convective air-drying at 60 °C.
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Figure 6 Changes in the moisture content of the pumpkin slice 
samples dried at 60 °C during rehydration at 30 °C. The data are mean 
values of 6 replicates. The solid lines represent approximations given 
by the exponential model shown as Eq. (4).
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Figure 7 Representative stress-strain curves by the puncture test of the 
fresh and pretreated pumpkin slices before drying (a), and after drying at 
60 °C and rehydration at 30 °C (b).
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Figure 1  Changes in the moisture ratio during drying of the non-treated pumpkin 

slices. The data are mean values of 6 replicates. The solid lines represent approximations 

given by Eq. (1). 

 

Figure 2  Representative Cole-Cole plots for the fresh, blanched, fresh-frozen, and 

blanched-frozen pumpkin slice samples. The solid lines represent approximations given by 

the modified Hayden model (Ando et al. 2017). 

 

Figure 3  Scanning electron micrographs of cross sections of the fresh (A, a), 

blanched (B, b), fresh-frozen (C, c) and blanched-frozen (D, d) pumpkin slices (A, B, C and 

D: ×100 images, a, b, c and d: ×500 images). 

 

Figure 4  Changes in the lightness (a), chroma (b) and Hue angle (c) of pumpkin slice 

samples during convective air-drying at 60 °C. The data are mean values of 8 replicates. Bars 

denote standard error. 

 

Figure 5  Scanning electron micrographs of cross sections of the fresh (a), blanched 

(b), fresh-frozen (c) and blanched-frozen (d) pumpkin slices after convective air-drying at 

60 °C. 

 

Figure 6  Changes in the moisture content of the pumpkin slice samples dried at 60 °C 

during rehydration at 30 °C. The data are mean values of 6 replicates. The solid lines 

represent approximations given by the exponential model shown as Eq. (4). 

 

Figure 7  Representative stress-strain curves by the puncture test of the fresh and 

pretreated pumpkin slices before drying (a), and after drying at 60 °C and rehydration at 

30 °C (b). 

 



Table 1 Effective diffusion coefficient of moisture during convective air-drying of pumpkin slices estimated from Eq. (1).

Fresh Blanched

40 °C

60 °C

80 °C

Fresh-frozen Blanched-frozen

1.06

2.11

3.59

D × 1010

(m2/s)

0.039

0.034

0.030

RMSE
(-)

1.13

2.20

3.73

D × 1010

(m2/s)

0.045

0.034

0.028

RMSE
(-)

1.11

2.30

3.89

D × 1010

(m2/s)

0.051

0.035

0.026

RMSE
(-)

1.16

2.32

4.00

D × 1010

(m2/s)

0.049

0.032

0.028

RMSE
(-)

RMSE: root mean squared error for the model fitting.

Drying temperature



Fresh

Blanched

Fresh-frozen

Blanched-frozen

Cm (pF)

219 b ± 14

138 c ± 17

38 d ± 2

509 a ± 8

Re (kΩ)

1.39 b ± 0.03

1.22 b ± 0.05

1.02 b ± 0.03

22.47 a ± 0.61

Ri (kΩ)

2.56 b ± 0.17

2.03 b ± 0.14

6.99 a ± 0.43

0.80 c ± 0.03

Table 2 Equivalent circuit parameters obtained from the model fitting. 

Cm: capacitance of cell membrane, Re: extracellular fluid resistance, Ri: intracellular fluid resistance. The values of Cm, 

Re and Ri represent the mean values of 12 replicates (± standard error). Different superscripts indicate significant 

differences (p < 0.05) between the means compared by a Tukey’ s multiple range test.



Table 3 Mechanical properties of the pumpkin slice samples.

Fracture stress σf (Pa) Initial modulus E (Pa)

36535 a ± 1908 44090 a ± 3399

2129 bc ± 114 16649 b ± 1167

4607 b ± 518 1770 c ± 149

326 c ± 18 1388 c ± 128

1918 a ± 143 7718 a ± 534

710 b ± 40 2174 b ± 361

722 b ± 108 1018 b ± 197

442 b ± 39 1025 b ± 114

The values represent the mean values of 12–14 replicates (± standard error). Different 

superscripts indicate significant differences (p < 0.05) between the means compared by 

a Tukey’ s multiple range test. The values of the samples before drying and after 

drying-rehydration were separately compared.

Condition

Fresh

Blanched

Fresh-frozen

Blanched-frozen

Before drying

After drying at 60 °C and rehydration at 30 °C

Fresh

Blanched

Fresh-frozen

Blanched-frozen


